

Novel Methods for Reflective Symmetry Detection in
Scanned 3D Models

 Matthew Stephenson

Computer Science and Software
Engineering Dept.

University of Canterbury
Christchurch New Zealand

mjs357@uclive.ac.nz

Adrian Clark
Computer Science and Software

Engineering Dept.
University of Canterbury

Christchurch New Zealand
adrian.clark@canterbury.ac.nz

Richard Green
Computer Science and Software

Engineering Dept.
University of Canterbury

Christchurch New Zealand
richard.green@canterbury.ac.nz

Abstract The concept of detecting symmetry within 3D
models has received an extensive amount of research
within the past decade. Numerous algorithms have been
proposed to identify reflective symmetry within 3D meshes
and to extract a quantitative measure for the mo
of symmetry. Much of the early work focuses on
identifying symmetry in noiseless 3D models with most
existing methods unable to work effectively on models
distorted by noise, such as those commonly obtained when
scanning objects in the real world. This report details the
design and implementation of two robust and fast
algorithms, which can be used on a wide variety of models to identify global approximate reflective symmetry. These
methods are also able to identify likely planes of symmetry
in models that have been distorted with noise or contain
minor imperfections, making them ideal for scanned
models of real world objects. The hypothesis planes are
determined by principal component analysis, after which
the proposed algorithms give each plane a numerical value
corresponding to its likelihood of being a plane of global
approximate reflective symmetry. The first algorithm uses
the Hausdorff distance between vertices to estimate
symmetry, whilst the second uses an approach based on
ray casting.

Keywords symmetry; detection; scanned; models; reflective
I. INTRODUCTION

 Symmetry is a mathematical concept that exists in many
man-made objects, as well as being widely prevalent in nature
[1]. 3D geometrical models are typically represented as a mesh
created from small polygons, usually triangles, with little to no
information about their higher level structure. Determining
these additional properties of a model, including its global
reflective symmetry, is an important task within computer
graphics and computer vision.

 Many of the current methods for identifying global
reflective symmetry planes suffer from a range of problems.
These include the inability to detect approximate symmetry
within geometry and problematic restrictions on the properties
the models must possess before the algorithm can be applied to
them, such as being convex or fully connected.

 The aim of this research is to develop simple, accurate and
fast algorithms that can be used to detect likely planes of global
approximate reflective symmetry within 3D models distorted
by small amounts of noise (see Figure 1). One key application
of this research is the capability to detect symmetry within
scanned models of 3D objects, which are typically distorted by
noise. By first identifying potential planes of symmetry within
the model, the algorithms calculate a measure for how likely
each hypothesis plane is to be a plane of reflective symmetry.
This value is then compared against a threshold to determine
whether it is large enough for the given model.
 Likely planes of reflective symmetry are determined using
principal component analysis (PCA) and two potential
methods for measuring the planes likelihood of symmetry
have been developed. The first method utilises the Hausdorff
distance between vertices on either side of the hypothesis
plane. The second method utilises ray casting to determine the
deviation between mesh intersection points on either side of
the hypothesis plane. Several variations to each method which
improve their accuracy and runtime are also investigated.

II. BACKGROUND
 Early symmetry detection algorithms were only concerned
with identifying exact symmetries within 2D images
represented as a set of planar points. The most common way
of achieving this is by reducing the 2D symmetry problem to a
1D pattern matching problem which works in O(n log n) time
[2]. This approach can be adapted and improved further, with
two notable extensions being the ability to detect partial
symmetry within a 2D image [3], and the ability to detect
approximate symmetry by utilising a hierarchy that defines
symmetry as a continuous feature [4]. However, both of these
additions are very computationally expensive and rely on

Figure 1: Example of a scanned 3D model containing one plane of global
approximate reflective symmetry.

points within the image. The original idea of reducing 2D
symmetry detection to a 1D pattern matching problem can
then be expanded to detect symmetry in 3D point sets [5], as
well as the ability to detect approximate symmetries using
similar principles [6].

 After this initial research had constructed the basis for
more advanced 3D model symmetry detection algorithms,
many improvements and variations were proposed in
subsequent years. These include, identifying automorphisms
of planar triply connected graphs [7], octree representation [8],
extended Gaussian image [9] and spherical harmonic
coefficients of generalised moments [10]. Several algorithms
for partial symmetry detection are also suggested, such as
Gaussian Euclidean distance transform [11] [12] and
stochastic clustering to find pairs of vertex groups [13]. Whilst
 it is possible to detect partial, rotational and reflectional
symmetry using a combination of these methods, none of them
are designed specifically for use on scanned 3D models. Our
methods are designed and evaluated specifically around these
types of mesh.

III. DESIGN AND IMPLEMENTATION
Our algorithms for global reflective symmetry detection

both have two distinct processes. The first process involves
determining potential planes of reflective symmetry (hypothesis planes) by using PCA. The second process
involves calculating a symmetry measure for each of the
hypothesis planes based on the level of reflective symmetry the
model has with respect to it. Our two algorithms differ in this
second process. One uses the Hausdorff distance and the other
uses ray casting.

A. Identifying Hypothesis Planes

Using PCA to orientate a model before attempting
symmetry detection is a technique that has been implemented
in many previous methods and has been shown to work
effectively at determining potential planes of reflective
symmetry [14]. For this reason it was selected as the method by
which to derive the hypothesis planes. Using PCA we
determine two eigenvectors representing the directions of
maximum variance. From these two eigenvectors we then
identify three hypothesis planes, defined as follows:
- Plane 1: The plane containing both PCA eigenvectors.
- Plane 2: Formed by creating a plane along the first PCA
eigenvector and which is also orthogonal to plane 1.
- Plane 3: Formed by creating a plane along the second PCA
eigenvector and which is also orthogonal to plane 1.

Now that the hypothesis planes have been identified it is
necessary to calculate a symmetry measure for determining
whether or not each of the hypothesis planes is also a plane of
reflective symmetry.

B. Hausdorff Distance Approach

The first method for calculating a symmetry measure uses
a variation of the Hausdorff distance algorithm to estimate a

symmetry measure
The mesh is first split into two smaller meshes using the
hypothesis plane that is being tested. This is done by iterating
through each vertex within the mesh and allocating it to one of
two sets based on which side of the hypothesis plane it is on.
The vertices within one of these sets are then reflected about
the hypothesis plane. If the two meshes are now
approximately the same then we conclude that the hypothesis
plane is indeed a plane of reflective symmetry.

The Hausdorff distance is a similarity measure that is

predominantly used to calculate the error created by
simplifying a mesh, but it can easily be modified for our
purpose here. The Hausdorff distance is defined between
two non-empty datasets and .

 In context this is calculated by taking each vertex within a
mesh and finding the minimum distance between it and any
vertex on the other mesh. The same is then done with the
meshes swapped and the maximum of these minimal distances
is defined as the Hausdorff distance [15, 16]. Whilst this is
good for measuring error during simplification [17] it is not
entirely effective for our purposes. This is mainly because it
returns the maximum deviation between the meshes, meaning
that if our model is perfectly symmetrical apart from a single
outlier then this would result in a large Hausdorff distance.
Instead, we are likely to get a better result if the average
distance is used as the similarity measure, rather than the
maximum.

 One disadvantage of this new approach is that it increases
the time required to sample the mesh, as we cannot apply any
vertex culling or other traditional improvements to increase

[18, 19].

 In context, this new method is performed by taking each
vertex within one of the meshes and recording the shortest
distance between it and any vertex on the other mesh. We then
compute the average of all these distances. The same is then
done but with the meshes swapped and the maximum of these
two averages is taken as the total deviation. The inverse of this
deviation can then be used as a similarity measure. This level
of similarity between these two meshes can also be used to
represent a measure of symmetry that the hypothesis plane has
with respect to the original model. If this value is above a pre-
determined threshold, then we conclude that the hypothesis
plane is likely to be a plane of reflective symmetry.

 Whilst this method is simple to understand and implement,
it suffers from being extremely inefficient and overly reliant
on the sampling resolution of the model. This algorithm can
potentially require exponential time, meaning that this method
is impractical for models where the number of vertices is very
high. Scanned 3D models can potentially contain millions of

vertices, necessitating the creation of an alternative method for
detecting symmetry which avoids these problems.

C. Ray Casting Method

The second method for calculating a symmetry measure
attempts to avoid the problem of sampling rate dependence by
using ray casting to create a set of mesh intersection points. In
order to simplify the ray casting algorithm, the model is first
rotated so that the hypothesis plane aligns with the plane
created by the x and y axis in world space. A set number of
rays are then uniformly cast through the mesh along the z-axis.
Due to the prior mesh rotation this has the effect of casting the
rays through the mesh in the direction perpendicular to the
hypothesis plane being tested. If a ray intersects with the mesh
then the positions at which it intersects are recorded for use in
calculating the symmetry measure. Intersections are
determined using a simple ray-triangle intersection algorithm
which calculates the distance that the ray has travelled before
each triangle intersection [20, 21].

The efficiency of the ray-triangle intersection algorithm
can be improved by first checking whether the ray being tested
intersects this bounding box will the normal ray-triangle
intersection algorithm be carried out. This initial check is
bounding boxes will not intersect with the ray, this helps
reduce the overall running time for the majority of models.

The total deviation between the models on each side of
the hypothesis plane is calculated based on the two sets of
intersection points and for the set of all rays and the
hypothesis plane .

 This means that for each ray there are three possible outcomes:

- No intersection points are found. The ray is ignored and no
calculation is done.
- There are intersection points on only one side of the
hypothesis plane. The sum of the distances between each
intersection point and the hypothesis plane is added to the total
deviation.
- There are collision points on both sides of the hypothesis
plane. The sum of the minimum distances between each of the
points in one set and any point in the other set is calculated.
The same is then done but with the two sets swapped.
greater is then added to the total deviation.

Once all rays have been checked, the total deviation is
divided by the number of rays which intersected the mesh. The
inverse of this deviation is then used as a measure of

symmetry that the hypothesis plane has with respect to the
original model. Much like the Hausdorff distance approach, if
this value is above a pre-determined threshold we conclude
that the hypothesis plane is likely to be a plane of reflective
symmetry.

D. Symmetry Measure Normalisation

Whilst both the Hausdorff distance and ray casting
approaches calculate a measure of symmetry, this value is not
normalised across models of different sizes. This is important
for the determination of a suitable threshold to use when
detecting approximate symmetry. The best way to normalise
the symmetry measure is to multiply it by the cube root of the
since many of the scanned models contain holes or other
calculating the signed volume of a tetrahedron based on each
triangle within the model [22]. These individual volumes are
then summed together and the absolute value of this is used as
an estimate

E. Additional Variations
While the general frameworks for the proposed symmetry

detection algorithms have been described, several additions
are proposed which can often provide better results.

1) Polygon Reduction:
One of the main limitations with the two methods described is
the large amount of time needed to analyse detailed models,
particularly with the Hausdorff distance approach. In order to
reduce the overall computation time we can reduce the number
of polygons within the mesh, before attempting symmetry
detection. One of the main polygon reduction methods is to
use quadric error metrics [23] (see Figure 2). This simplifies
the mesh by iteratively contracting edges until the desired
number of vertices or faces remains. The choice about which
edge to remove is determined by approximating the error cost
of each possible contraction between a pair of vertices. The
algorithm then iteratively removes the pair with minimum
cost, and updates any affected edges.

The overall result of these edge contractions is that they
can be used to greatly reduce the total number of computations
required to detect symmetry within 3D models. This also
dense groups of vertices sparser, resulting in a more uniform
simplification is likely to result in an increased error rate.

 Figure 2: A collection of simplified models, the number of faces reduced by
approximately half each time

2) K-d tree:
A -d tree is a space partitioning data structure for organising
points in -dimensional space [24]. For our method, we use a

-d tree to improve the overall runtime of our ray casting
approach by reducing the time taken to find ray-triangle
intersections. Although we have already improved the runtime
slightly, by first performing an intersection test for each ray
using the triang -d tree can
improve this even more.

The -d tree is constructed by recursively splitting the sets

of vertices (initially all vertices are in one set) into two smaller
subsets based on the median of either the x or y value of their
positions (the axis to split on is swapped for each iteration).
Each iteration effectively doubles the number of vertex sets
and once a desired depth is reached the algorithm halts.

This -d tree can now be used during ray casting to reduce
the total number of ray-triangle intersection tests that need to
be carried out. Firstly, we determine which of the -d tree
subsets the ray will intersect. We then perform our regular
intersection algorithm but only for the triangles which have at
least one of their vertices within the subset that the ray
intersected. The triangles that each -d tree subset is
associated with are determined before any rays are cast to
prevent repeat calculations. This method may be used
alongside, or instead of, the original bounding box
improvement.

There is a small issue with this method however, which
may decrease the accuracy of the symmetry detection. It is
entirely possible (especially for implementations where the
depth of the -d tree is high) for a situation to arise where
subset but part of the triangle is. This results in an inaccurate
reading for any rays that may pass through this portion of the triangle. This particular problem is demonstrated visually in
Figure 3. Whilst there are more sophisticated methods for
correctly identifying which subsections intersect the triangle,
they take much longer to run, counteracting any potential
runtime reduction. This means that this variation should only
be used in situations where time is a critical factor and should
ideally be paired with a low number of rays being cast.

 Figure 3: The problem with -
located within three sections but the triangle overlaps four sections

3) Non-uniform Casting:
Another potential variation to the ray casting method is to
improve upon the regular uniform casting to a more advanced
non-uniform method. There are many different ways to
perform this but we will only focus on one of them.

 One of the simplest methods to improve upon uniform ray
casting is to base the distribution of the rays on the distribution
rays evenly along the model, based on the number of vertices
rather than the total length. This results in the algorithm
obtaining a greater level of information for the sections of the
model which contain more vertices and less information about
the sections with fewer vertices.
 In context, this is achieved by first sorting the vertices into
order along the x and y axis (after the vertices and plane have
been orientated correctly). Each of these sorted sets (one for x-
axis ordering and the other for y-axis ordering) is then split
into subsets based on the number of rays that are being cast
along each axis. The starting position for the rays are then
determined by taking the first value of each set for all possible
pairings of the x-axis ordered subsets and y-axis ordered
subsets.

IV. RESULTS
 The testing for both the Hausdorff distance and ray casting
methods, as well as all applicable variations, was initially
performed using the Princeton Shape Benchmark (PSB) [25].
This is a database containing 1814 3D polygonal meshes and
has been used previously to test many model analysis
programs. The models within this database vary greatly in
terms of their size, detail and of course their symmetry.

 After this, more specific tests were conducted using a
smaller collection of 32 scanned 3D models. These models
were obtained using the scanning program 123DCatch [26].
This set of models was also used to determine a suitable
threshold for the symmetry measure of each method.

 Testing was performed on a machine running Windows
8.1 with an i7-4690 processor and 16GB of RAM. Both
algorithms were developed in C++ using Microsoft Visual
Studio 2013.

 Whether an object has approximate symmetry depends
very much on the desired level of accuracy. There is no
mathematical definition of approximate symmetry and it is
generally left for the user to decide whether the symmetry is
sufficient enough for their purpose. Both our methods
demonstrated 100% accuracy when applied to models
containing perfect symmetry, but the accuracy for approximate
symmetry detection is more difficult to quantify. How much
each half of a perfectly symmetrical model may differ before it
is no longer considered approximately symmetrical is
ultimately dictated by the desired application.

 To gain a better measure of accuracy, each method was
used to detect global reflective symmetry within the collection
of 32 scanned 3D models. All of the real-world objects used in
these scans had a high level of approximate reflective
symmetry, although the models were distorted slightly by the
scanning process. For each model, three hypothesis planes
were identified by PCA and the correct plane of reflective
symmetry was determined manually.

Each of our symmetry detection methods were then applied
to each of the hypothesis planes identified by PCA. Each of
these planes was then given a symmetry measure representing
the level of reflective symmetry the model has with respect to
this plane. The symmetry measure for the correct plane of
reflective symmetry was then compared against the values for
the other two incorrect planes (see Figures 4 and 5). We used
90% polygon reduction on all models and 400 rays for the ray
casting approach.

 Figure 4:
planes using the Hausdorff distance based method

planes using the ray casting based method

 The speed of each of our methods varies depending upon
different factors. For the Hausdorff distance method the
runtime of the algorithm increases relative to the number of
vertices the model has. For the ray casting method the runtime
of the algorithm increases relative to both the number of faces
the model has and how many rays are cast through it.
Fortunately, the relationship between the number of vertices
and number of faces within a model is typically very linear,
with the number of faces approximately double the number of
vertices. This allows us to compare the runtime of both
methods against the number of vertices within the model. (see
Figure 6).

 Figure 6: The total runtime for each method relative to the number of vertices
in the model

A. Threshold Determination
In order to gain a measure of the accuracy of each method

it is necessary to determine a suitable threshold for the
symmetry measure of each method. This threshold value can
then be used to identify reflective symmetry planes in
unknown models. The thresholds for each method that
produced the fewest misclassifications are as follows:

Hausdorff Distance Method: -

- Accuracy per plane = 96.88%

Ray Casting Method: -
- Accuracy per plane = 94.62%

These thresholds are based on the assumption that the cost

of a false positive is the same as the cost of a false negative.
These thresholds should therefore be tailored by the situation
and conditions they are applied to. It is important to note that
both the Hausdorff distance and ray casting methods always
gave the correct plane of reflective symmetry a higher value
than either of the incorrect planes. This means that if the user
knows that there is a plane of reflective symmetry within a
model our methods can determine this plane with a very high
level of certainty.

0
20
40
60
80

100
120

1 4 7 10 13 16 19 22 25 28 31

Sym
me

try
Me

asu
re

Model Number

Hausdorff Distance Symmetry Measure

CorrectPlane
IncorrectPlane
IncorrectPlane

0
50

100
150
200
250
300

1 4 7 10 13 16 19 22 25 28 31

Sym
me

try
Me

asu
re

Model Number

Ray Casting Symmetry Measure

CorrectPlane
IncorrectPlane
IncorrectPlane

0
0.5
1

1.5
2

2.5
3

0 10000 20000Ove
rall

 Ru
ntim

e (s
eco

nds
)

Number of Vertices

Vertex Number vs. Runtime

Hausdorff
Ray

V. DISCUSSION
 Whilst both of these methods have demonstrated their
effectiveness at detecting global reflective symmetry within
scanned 3D models, the choice of which approach to use
depends greatly upon the situation and the types of models
they are to be applied to. Originally, the Hausdorff distance
method gave lower accuracy than the ray casting method.
However, after the inclusion of polygon reduction the
accuracy of the Hausdorff distance method increased
dramatically, to above that of the ray casting method. This is
largely due to the fact that this reduction made the sampling
resolution more consistent throughout the model. The ray
casting approach was typically both faster, for models with a
large number of vertices, and more customizable than the
Hausdorff distance method. This would therefore make it
more suitable for situations where time is a critical factor or if
the models are known to have a very irregular sampling rate. It
is also possible to use both methods in conjunction with each
other, for situations where the accuracy of detection is very
important (e.g. take the average symmetry measure of both
methods).

VI. CONCLUSION
 This report provides a detailed description and analysis of
two novel methods, as well as several additional
improvements, for global approximate reflective symmetry
detection within scanned 3D models. These methods are both
fast and robust, identifying planes of reflective symmetry
correctly for the majority of 3D models tested. The first of
these methods uses a variation of the Hausdorff distance to
identify reflective symmetry, whilst the second method utilises
ray casting and triangle intersection. When applied to our
database of 32 scanned 3D models, the Hausdorff distance
method had an accuracy of 96.88% whilst the ray casting
method had an accuracy of 94.62%. In addition, both methods
always assigned a symmetry measure to the correct plane that
was larger than either of the other two incorrect planes.
However, it is important to note that approximate symmetry is
not an absolute property but rather a measure relative to the
detection is difficult to quantify, we are confident that our
methods provide a robust and fast approach for detecting
global approximate reflective symmetry in scans of 3D
models.

REFERENCES

[1] Y. Liu, Hel-or, H., Kaplan, C. S., and Gool, L. J. V., "Foundations

and Trends in Computer Graphics and Vision," Computational
symmetry in computer vision and computer graphics, vol. 5, pp. 1-
195, 2010.

[2] M. J. Atallah, "On Symmetry Detection," IEEE Transactions on
Computers, vol. 34, pp. 663-666, 1985.

[3] A. B. S. Parry-Barwick, "Symmetry analysis and geometric
modelling," Digital Image Computing Techniques and
Applications, vol. 1, pp. 39-46, 1993.

[4] H. Zabrodsky, S. Peleg, and D. Avnir, "Symmetry as a continuous
feature," Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 17, pp. 1154-1166, 1995.

[5] J. Wolter, T. Woo, and R. Volz, "Optimal algorithms for symmetry
detection in two and three dimensions," The Visual Computer, vol.
1, pp. 37-48, 1985/07/01 1985.

[6] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl, "Congruence,
similarity and symmetries of geometric objects," Discrete Comput.
Geom., vol. 3, pp. 237-256, 1988.

[7] X.-Y. Jiang and H. Bunke, "Determination of the Symmetries of
Polyhedra and an Application to Object Recognition," presented at
the Proceedings of the International Workshop on Computational
Geometry - Methods, Algorithms and Applications, 1991.

[8] P. Minovic, S. Ishikawa, and K. Kato, "Symmetry Identification of
a 3-D Object Represented by Octree," IEEE Trans. Pattern Anal.
Mach. Intell., vol. 15, pp. 507-514, 1993.

[9] S. Changming and J. Sherrah, "3D symmetry detection using the
extended Gaussian image," Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 19, pp. 164-168, 1997.

[10] l. Martinet, C. Soler, N. Holzschuch, and F. X. Sillion, "Accurate
detection of symmetries in 3D shapes," ACM Trans. Graph., vol.
25, pp. 439-464, 2006.

[11] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, "Symmetry
descriptors and 3D shape matching," presented at the Proceedings
of the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing, Nice, France, 2004.

[12] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T.
Funkhouser, "A planar-reflective symmetry transform for 3D
shapes," ACM Trans. Graph., vol. 25, pp. 549-559, 2006.

[13] N. J. Mitra, L. J. Guibas, and M. Pauly, "Partial and approximate
symmetry detection for 3D geometry," ACM Trans. Graph., vol.
25, pp. 560-568, 2006.

[14] D. Dimitrov, Geometric Applications of Principal Component
Analysis: VDM Publishing, 2012. [15] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, "MESH: measuring
errors between surfaces using the Hausdorff distance," in
Multimedia and Expo, 2002. ICME '02. Proceedings. 2002 IEEE
International Conference on, 2002, pp. 705-708 vol.1.

[16] M. a. B. Guthe, Pavel and Klein, Reinhard, "Fast and accurate
Hausdorff distance calculation between meshes," Journal of
WSCG, vol. 13, pp. 41--48, 2005.

[17] P. Cignoni, C. Rocchini, and R. Scopigno, "Metro: measuring error
on simplified surfaces," Centre National de la Recherche
Scientifique1996.

[18] R. Straub, "Exact Computation of the Hausdorff Distance between Triangular Meshes," Proceedings of Eurographics 2007, pp. 17-
20, 2007.

[19] M. Barton, I. Hanniel, G. Elber, and M.-S. Kim, "Precise
Hausdorff distance computation between polygonal meshes,"
Comput. Aided Geom. Des., vol. 27, pp. 580-591, 2010.

[20] J. A. K. a. K. Choi, "Ray Tracing Triangular Meshes," In Western
Computer Graphics Symposium, 1995.

[21] T. Moller and B. Trumbore, "Fast, minimum storage ray-triangle
intersection," J. Graph. Tools, vol. 2, pp. 21-28, 1997.

[22] Z. Cha and C. Tsuhan, "Efficient feature extraction for 2D/3D
objects in mesh representation," in Image Processing, 2001.
Proceedings. 2001 International Conference on, 2001, pp. 935-938
vol.3.

[23] M. Garland and P. S. Heckbert, "Surface simplification using
quadric error metrics," presented at the Proceedings of the 24th
annual conference on Computer graphics and interactive
techniques, 1997.

[24] J. L. Bentley, "Multidimensional binary search trees used for
associative searching," Commun. ACM, vol. 18, pp. 509-517, 1975.

[25] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, "The
Princeton Shape Benchmark," presented at the Proceedings of the
Shape Modeling International 2004, Genova, Italy, 2004.

[26] D. Catch. (2015). Autodesk 123D Catch | 3d model from photos.
Available: http://www.123dapp.com/catch

