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Abstract The concept of detecting symmetry within 3D 
models has received an extensive amount of research 
within the past decade. Numerous algorithms have been 
proposed to identify reflective symmetry within 3D meshes 
and to extract a quantitative measure for the mo
of symmetry. Much of the early work focuses on 
identifying symmetry in noiseless 3D models with most 
existing methods unable to work effectively on models 
distorted by noise, such as those commonly obtained when 
scanning objects in the real world. This report details the 
design and implementation of two robust and fast 
algorithms, which can be used on a wide variety of models to identify global approximate reflective symmetry. These 
methods are also able to identify likely planes of symmetry 
in models that have been distorted with noise or contain 
minor imperfections, making them ideal for scanned 
models of real world objects. The hypothesis planes are 
determined by principal component analysis, after which 
the proposed algorithms give each plane a numerical value 
corresponding to its likelihood of being a plane of global 
approximate reflective symmetry. The first algorithm uses 
the Hausdorff distance between vertices to estimate 
symmetry, whilst the second uses an approach based on 
ray casting.  
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I.  INTRODUCTION 

 Symmetry is a mathematical concept that exists in many 
man-made objects, as well as being widely prevalent in nature 
[1]. 3D geometrical models are typically represented as a mesh 
created from small polygons, usually triangles, with little to no 
information about their higher level structure. Determining 
these additional properties of a model, including its global 
reflective symmetry, is an important task within computer 
graphics and computer vision. 
 
 Many of the current methods for identifying global 
reflective symmetry planes suffer from a range of problems. 
These include the inability to detect approximate symmetry 
within geometry and problematic restrictions on the properties 
the models must possess before the algorithm can be applied to 
them, such as being convex or fully connected. 

 The aim of this research is to develop simple, accurate and 
fast algorithms that can be used to detect likely planes of global 
approximate reflective symmetry within 3D models distorted 
by small amounts of noise (see Figure 1). One key application 
of this research is the capability to detect symmetry within 
scanned models of 3D objects, which are typically distorted by 
noise. By first identifying potential planes of symmetry within 
the model, the algorithms calculate a measure for how likely 
each hypothesis plane is to be a plane of reflective symmetry. 
This value is then compared against a threshold to determine 
whether it is large enough for the given model. 
       Likely planes of reflective symmetry are determined using 
principal component analysis (PCA) and two potential 
methods for measuring the planes likelihood of symmetry 
have been developed. The first method utilises the Hausdorff 
distance between vertices on either side of the hypothesis 
plane. The second method utilises ray casting to determine the 
deviation between mesh intersection points on either side of 
the hypothesis plane. Several variations to each method which 
improve their accuracy and runtime are also investigated. 
 

II. BACKGROUND 
      Early symmetry detection algorithms were only concerned 
with identifying exact symmetries within 2D images 
represented as a set of planar points. The most common way 
of achieving this is by reducing the 2D symmetry problem to a 
1D pattern matching problem which works in O(n log n) time 
[2]. This approach can be adapted and improved further, with 
two notable extensions being the ability to detect partial 
symmetry within a 2D image [3], and the ability to detect 
approximate symmetry by utilising a hierarchy that defines 
symmetry as a continuous feature [4]. However, both of these 
additions are very computationally expensive and rely on 
 
 
 
  
 
 
 

Figure 1: Example of a scanned 3D model containing one plane of global 
approximate reflective symmetry. 



 

points within the image. The original idea of reducing 2D 
symmetry detection to a 1D pattern matching problem can 
then be expanded to detect symmetry in 3D point sets [5], as 
well as the ability to detect approximate symmetries using 
similar principles [6]. 

 
      After this initial research had constructed the basis for 
more advanced 3D model symmetry detection algorithms, 
many improvements and variations were proposed in 
subsequent years. These include, identifying automorphisms  
of planar triply connected graphs [7], octree representation [8],  
extended Gaussian image [9] and spherical harmonic 
coefficients of generalised moments [10]. Several algorithms 
for partial symmetry detection are also suggested, such as  
Gaussian Euclidean distance transform [11] [12] and 
stochastic clustering to find pairs of vertex groups [13]. Whilst 
 it is possible to detect partial, rotational and reflectional 
symmetry using a combination of these methods, none of them 
are designed specifically for use on scanned 3D models. Our 
methods are designed and evaluated specifically around these 
types of mesh. 
 

III. DESIGN AND IMPLEMENTATION 
Our algorithms for global reflective symmetry detection 

both have two distinct processes. The first process involves 
determining potential planes of reflective symmetry (hypothesis planes) by using PCA. The second process 
involves calculating a symmetry measure for each of the 
hypothesis planes based on the level of reflective symmetry the 
model has with respect to it. Our two algorithms differ in this 
second process. One uses the Hausdorff distance and the other 
uses ray casting.  

 
A. Identifying Hypothesis Planes 

Using PCA to orientate a model before attempting 
symmetry detection is a technique that has been implemented 
in many previous methods and has been shown to work 
effectively at determining potential planes of reflective 
symmetry [14]. For this reason it was selected as the method by 
which to derive the hypothesis planes. Using PCA we 
determine two eigenvectors representing the directions of 
maximum variance. From these two eigenvectors we then 
identify three hypothesis planes, defined as follows: 
- Plane 1: The plane containing both PCA eigenvectors. 
- Plane 2: Formed by creating a plane along the first PCA 
eigenvector and which is also orthogonal to plane 1. 
- Plane 3: Formed by creating a plane along the second PCA 
eigenvector and which is also orthogonal to plane 1. 

Now that the hypothesis planes have been identified it is 
necessary to calculate a symmetry measure for determining 
whether or not each of the hypothesis planes is also a plane of 
reflective symmetry. 

 
B. Hausdorff Distance Approach 

The first method for calculating a symmetry measure uses 
a variation of the Hausdorff distance algorithm to estimate a 

symmetry measure 
The mesh is first split into two smaller meshes using the 
hypothesis plane that is being tested. This is done by iterating 
through each vertex within the mesh and allocating it to one of 
two sets based on which side of the hypothesis plane it is on. 
The vertices within one of these sets are then reflected about 
the hypothesis plane. If the two meshes are now 
approximately the same then we conclude that the hypothesis 
plane is indeed a plane of reflective symmetry. 

 
The Hausdorff distance is a similarity measure that is 

predominantly used to calculate the error created by 
simplifying a mesh, but it can easily be modified for our 
purpose here. The Hausdorff distance  is defined between 
two non-empty datasets  and . 
 

 
       In context this is calculated by taking each vertex within a 
mesh and finding the minimum distance between it and any 
vertex on the other mesh. The same is then done with the 
meshes swapped and the maximum of these minimal distances 
is defined as the Hausdorff distance [15, 16]. Whilst this is 
good for measuring error during simplification [17] it is not 
entirely effective for our purposes. This is mainly because it 
returns the maximum deviation between the meshes, meaning 
that if our model is perfectly symmetrical apart from a single 
outlier then this would result in a large Hausdorff distance. 
Instead, we are likely to get a better result if the average 
distance is used as the similarity measure, rather than the 
maximum.  
 

      One disadvantage of this new approach is that it increases 
the time required to sample the mesh, as we cannot apply any 
vertex culling or other traditional improvements to increase 

[18, 19]. 
 
      In context, this new method is performed by taking each 
vertex within one of the meshes and recording the shortest 
distance between it and any vertex on the other mesh. We then 
compute the average of all these distances. The same is then 
done but with the meshes swapped and the maximum of these 
two averages is taken as the total deviation. The inverse of this 
deviation can then be used as a similarity measure. This level 
of similarity between these two meshes can also be used to 
represent a measure of symmetry that the hypothesis plane has 
with respect to the original model. If this value is above a pre-
determined threshold, then we conclude that the hypothesis 
plane is likely to be a plane of reflective symmetry. 
 
      Whilst this method is simple to understand and implement, 
it suffers from being extremely inefficient and overly reliant 
on the sampling resolution of the model. This algorithm can 
potentially require exponential time, meaning that this method 
is impractical for models where the number of vertices is very 
high. Scanned 3D models can potentially contain millions of 



 

vertices, necessitating the creation of an alternative method for 
detecting symmetry which avoids these problems.  
 
C. Ray Casting Method 

The second method for calculating a symmetry measure 
attempts to avoid the problem of sampling rate dependence by 
using ray casting to create a set of mesh intersection points. In 
order to simplify the ray casting algorithm, the model is first 
rotated so that the hypothesis plane aligns with the plane 
created by the x and y axis in world space. A set number of 
rays are then uniformly cast through the mesh along the z-axis. 
Due to the prior mesh rotation this has the effect of casting the 
rays through the mesh in the direction perpendicular to the 
hypothesis plane being tested. If a ray intersects with the mesh 
then the positions at which it intersects are recorded for use in 
calculating the symmetry measure. Intersections are 
determined using a simple ray-triangle intersection algorithm 
which calculates the distance that the ray has travelled before 
each triangle intersection [20, 21]. 
 

The efficiency of the ray-triangle intersection algorithm 
can be improved by first checking whether the ray being tested 
intersects this bounding box will the normal ray-triangle 
intersection algorithm be carried out. This initial check is 
bounding boxes will not intersect with the ray, this helps 
reduce the overall running time for the majority of models. 
 

The total deviation  between the models on each side of 
the hypothesis plane is calculated based on the two sets of 
intersection points  and  for the set of all rays  and the 
hypothesis plane . 
 

 

 This means that for each ray there are three possible outcomes: 
 
- No intersection points are found. The ray is ignored and no 
calculation is done. 
- There are intersection points on only one side of the 
hypothesis plane. The sum of the distances between each 
intersection point and the hypothesis plane is added to the total 
deviation. 
- There are collision points on both sides of the hypothesis 
plane. The sum of the minimum distances between each of the 
points in one set and any point in the other set is calculated. 
The same is then done but with the two sets swapped. 
greater is then added to the total deviation. 
 

Once all rays have been checked, the total deviation is 
divided by the number of rays which intersected the mesh. The 
inverse of this deviation is then used as a measure of 

symmetry that the hypothesis plane has with respect to the 
original model. Much like the Hausdorff distance approach, if  
this value is above a pre-determined threshold we conclude 
that the hypothesis plane is likely to be a plane of reflective 
symmetry. 

 
D. Symmetry Measure Normalisation 

Whilst both the Hausdorff distance and ray casting 
approaches calculate a measure of symmetry, this value is not 
normalised across models of different sizes. This is important 
for the determination of a suitable threshold to use when 
detecting approximate symmetry. The best way to normalise 
the symmetry measure is to multiply it by the cube root of the 
since many of the scanned models contain holes or other 
calculating the signed volume of a tetrahedron based on each 
triangle within the model [22]. These individual volumes are 
then summed together and the absolute value of this is used as 
an estimate   
 

 
 

E. Additional Variations 
While the general frameworks for the proposed symmetry 

detection algorithms have been described, several additions 
are proposed which can often provide better results. 
 

1) Polygon Reduction: 
One of the main limitations with the two methods described is 
the large amount of time needed to analyse detailed models, 
particularly with the Hausdorff distance approach. In order to 
reduce the overall computation time we can reduce the number 
of polygons within the mesh, before attempting symmetry 
detection. One of the main polygon reduction methods is to 
use quadric error metrics [23] (see Figure 2). This simplifies 
the mesh by iteratively contracting edges until the desired 
number of vertices or faces remains. The choice about which 
edge to remove is determined by approximating the error cost 
of each possible contraction between a pair of vertices. The 
algorithm then iteratively removes the pair with minimum 
cost, and updates any affected edges. 
 

The overall result of these edge contractions is that they 
can be used to greatly reduce the total number of computations 
required to detect symmetry within 3D models. This also 
dense groups of vertices sparser, resulting in a more uniform 
simplification is likely to result in an increased error rate.  

 Figure 2: A collection of simplified models, the number of faces reduced by 
approximately half each time 



 

2) K-d tree: 
A -d tree is a space partitioning data structure for organising 
points in -dimensional space [24]. For our method, we use a 

-d tree to improve the overall runtime of our ray casting 
approach by reducing the time taken to find ray-triangle 
intersections. Although we have already improved the runtime 
slightly, by first performing an intersection test for each ray 
using the triang -d tree can 
improve this even more.  

 
The -d tree is constructed by recursively splitting the sets 

of vertices (initially all vertices are in one set) into two smaller 
subsets based on the median of either the x or y value of their 
positions (the axis to split on is swapped for each iteration). 
Each iteration effectively doubles the number of vertex sets 
and once a desired depth is reached the algorithm halts.  
 

This -d tree can now be used during ray casting to reduce 
the total number of ray-triangle intersection tests that need to 
be carried out. Firstly, we determine which of the -d tree 
subsets the ray will intersect. We then perform our regular 
intersection algorithm but only for the triangles which have at 
least one of their vertices within the subset that the ray 
intersected. The triangles that each -d tree subset is 
associated with are determined before any rays are cast to 
prevent repeat calculations. This method may be used 
alongside, or instead of, the original bounding box 
improvement. 
 

There is a small issue with this method however, which 
may decrease the accuracy of the symmetry detection. It is 
entirely possible (especially for implementations where the 
depth of the -d tree is high) for a situation to arise where 
subset but part of the triangle is. This results in an inaccurate 
reading for any rays that may pass through this portion of the triangle. This particular problem is demonstrated visually in 
Figure 3. Whilst there are more sophisticated methods for 
correctly identifying which subsections intersect the triangle, 
they take much longer to run, counteracting any potential 
runtime reduction.  This means that this variation should only 
be used in situations where time is a critical factor and should 
ideally be paired with a low number of rays being cast.  

 Figure 3: The problem with -
located within three sections but the triangle overlaps four sections  

 
 

3) Non-uniform Casting: 
Another potential variation to the ray casting method is to 
improve upon the regular uniform casting to a more advanced 
non-uniform method. There are many different ways to 
perform this but we will only focus on one of them. 
 
      One of the simplest methods to improve upon uniform ray 
casting is to base the distribution of the rays on the distribution 
rays evenly along the model, based on the number of vertices 
rather than the total length. This results in the algorithm 
obtaining a greater level of information for the sections of the 
model which contain more vertices and less information about 
the sections with fewer vertices.  
      In context, this is achieved by first sorting the vertices into 
order along the x and y axis (after the vertices and plane have 
been orientated correctly). Each of these sorted sets (one for x-
axis ordering and the other for y-axis ordering) is then split 
into subsets based on the number of rays that are being cast 
along each axis. The starting position for the rays are then 
determined by taking the first value of each set for all possible 
pairings of the x-axis ordered subsets and y-axis ordered 
subsets. 
 

IV. RESULTS 
      The testing for both the Hausdorff distance and ray casting 
methods, as well as all applicable variations, was initially 
performed using the Princeton Shape Benchmark (PSB) [25]. 
This is a database containing 1814 3D polygonal meshes and 
has been used previously to test many model analysis 
programs. The models within this database vary greatly in 
terms of their size, detail and of course their symmetry. 
 
      After this, more specific tests were conducted using a 
smaller collection of 32 scanned 3D models. These models 
were obtained using the scanning program 123DCatch [26]. 
This set of models was also used to determine a suitable 
threshold for the symmetry measure of each method. 
 
       Testing was performed on a machine running Windows 
8.1 with an i7-4690 processor and 16GB of RAM. Both 
algorithms were developed in C++ using Microsoft Visual 
Studio 2013. 
 
      Whether an object has approximate symmetry depends 
very much on the desired level of accuracy. There is no 
mathematical definition of approximate symmetry and it is 
generally left for the user to decide whether the symmetry is 
sufficient enough for their purpose. Both our methods 
demonstrated 100% accuracy when applied to models 
containing perfect symmetry, but the accuracy for approximate 
symmetry detection is more difficult to quantify. How much 
each half of a perfectly symmetrical model may differ before it 
is no longer considered approximately symmetrical is 
ultimately dictated by the desired application. 
 
 



 

      To gain a better measure of accuracy, each method was 
used to detect global reflective symmetry within the collection 
of 32 scanned 3D models. All of the real-world objects used in 
these scans had a high level of approximate reflective 
symmetry, although the models were distorted slightly by the 
scanning process. For each model, three hypothesis planes 
were identified by PCA and the correct plane of reflective 
symmetry was determined manually. 
 

Each of our symmetry detection methods were then applied 
to each of the hypothesis planes identified by PCA. Each of 
these planes was then given a symmetry measure representing 
the level of reflective symmetry the model has with respect to 
this plane. The symmetry measure for the correct plane of 
reflective symmetry was then compared against the values for 
the other two incorrect planes (see Figures 4 and 5). We used 
90% polygon reduction on all models and 400 rays for the ray 
casting approach. 

 
 

 Figure 4: 
planes using the Hausdorff distance based method 

 

planes using the ray casting based method 
 
 
 
 
 

 The speed of each of our methods varies depending upon 
different factors. For the Hausdorff distance method the 
runtime of the algorithm increases relative to the number of 
vertices the model has. For the ray casting method the runtime 
of the algorithm increases relative to both the number of faces 
the model has and how many rays are cast through it. 
Fortunately, the relationship between the number of vertices 
and number of faces within a model is typically very linear, 
with the number of faces approximately double the number of 
vertices. This allows us to compare the runtime of both 
methods against the number of vertices within the model. (see 
Figure 6).  

 Figure 6: The total runtime for each method relative to the number of vertices 
in the model  

A. Threshold Determination 
In order to gain a measure of the accuracy of each method 

it is necessary to determine a suitable threshold for the 
symmetry measure of each method. This threshold value can 
then be used to identify reflective symmetry planes in 
unknown models. The thresholds for each method that 
produced the fewest misclassifications are as follows: 
 
Hausdorff Distance Method: -  

- Accuracy per plane = 96.88% 
 

Ray Casting Method: -  
- Accuracy per plane = 94.62% 

 
These thresholds are based on the assumption that the cost 

of a false positive is the same as the cost of a false negative. 
These thresholds should therefore be tailored by the situation 
and conditions they are applied to. It is important to note that 
both the Hausdorff distance and ray casting methods always 
gave the correct plane of reflective symmetry a higher value 
than either of the incorrect planes. This means that if the user 
knows that there is a plane of reflective symmetry within a 
model our methods can determine this plane with a very high 
level of certainty. 
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V. DISCUSSION 
      Whilst both of these methods have demonstrated their 
effectiveness at detecting global reflective symmetry within 
scanned 3D models, the choice of which approach to use 
depends greatly upon the situation and the types of models 
they are to be applied to. Originally, the Hausdorff distance 
method gave lower accuracy than the ray casting method. 
However, after the inclusion of polygon reduction the 
accuracy of the Hausdorff distance method increased 
dramatically, to above that of the ray casting method. This is 
largely due to the fact that this reduction made the sampling 
resolution more consistent throughout the model. The ray 
casting approach was typically both faster, for models with a 
large number of vertices, and more customizable than the 
Hausdorff distance method. This would therefore make it 
more suitable for situations where time is a critical factor or if 
the models are known to have a very irregular sampling rate. It 
is also possible to use both methods in conjunction with each 
other, for situations where the accuracy of detection is very 
important (e.g. take the average symmetry measure of both 
methods). 
 

VI. CONCLUSION 
      This report provides a detailed description and analysis of 
two novel methods, as well as several additional 
improvements, for global approximate reflective symmetry 
detection within scanned 3D models. These methods are both 
fast and robust, identifying planes of reflective symmetry 
correctly for the majority of 3D models tested. The first of 
these methods uses a variation of the Hausdorff distance to 
identify reflective symmetry, whilst the second method utilises 
ray casting and triangle intersection. When applied to our 
database of 32 scanned 3D models, the Hausdorff distance 
method had an accuracy of 96.88% whilst the ray casting 
method had an accuracy of 94.62%. In addition, both methods 
always assigned a symmetry measure to the correct plane that 
was larger than either of the other two incorrect planes. 
However, it is important to note that approximate symmetry is 
not an absolute property but rather a measure relative to the 
detection is difficult to quantify, we are confident that our 
methods provide a robust and fast approach for detecting 
global approximate reflective symmetry in scans of 3D 
models. 
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