
Generating Stable, Building Block Structures from
Sketches

Matthew Stephenson1, Jochen Renz1, Xiaoyu Ge1, and Peng Zhang1

Australian National University, Research School of Computer Science, Canberra, A.C.T. 0200,
Australia, matthew.stephenson@anu.edu.au

Abstract. This paper presents a structure generation algorithm which converts
rough human drawings into stable structures comprised of rectangular blocks,
suitable for physics-based 2D environments. Generating viable structures for a
physics-based environment imposes many additional requirements above those
of most traditional sketch-based domains. Our method is sophisticated enough to
deal with these requirements, while still ensuring that the generated structure ac-
curately represents the original sketch. We describe and implement a framework
for this process, allowing inexperienced users to create complex structures with
ease. Multiple structure possibilities are identified for a single drawing and are
then compared based on their similarity to the original sketch using a heuristic
value. We evaluate our approach by investigating its ability to replicate structures
for the video game Angry Birds, based on human drawn sketches of the original
levels.

1 Introduction

AI assisted generation of digital content with minimal or reduced human input, also
known as procedural content generation, has become an increasingly popular area of
research over the past few years [35]. This process allows for the fast and efficient gen-
eration of suitable content, without the need for experienced designers or developers.
However, the methods implemented for achieving this typically have a very limited or
unintuitive range of options for designer control [17, 33]. This makes it difficult for the
average user to effectively design and create their own content. One possible solution to
this problem is to implement a sketch recognition and understanding system, allowing
users to interact with programs through the use of hand drawn inputs [7]. The use of a
sketch-based interface for the automatic generation of content, referred to in this paper
as sketch-based generation, allows users to design and create their own content quickly
and intuitively.

Previous applications and research around sketch recognition has been conducted in
many different areas, including designing analog electrical circuits [1], creating UML
diagrams [16], drawing chemical molecule structures [27], and solving physics-based
problems [12]. Several different algorithms have also been proposed to generate virtual
content for video games from 2D human sketches. These include designing maps for
strategy games [22], levels for 2D platformers [32], building 3D game worlds [31],
modelling human characters [21], and creating virtual garments [37]. However, none of
these methods have had to consider whether or not the result is feasible within a realistic

2 M. Stephenson et al.

physics-based environment. This type of environment places additional restrictions on
the generated content, such as a limited number of resource options or requiring that
the result be stable. Several previous programs for creating content within a physics-
simulation have been developed, such as CogSketch [13], SketchyDynamics [5] and
PhysicsBook [4], but these also make no attempt to correct or fix the generated content
and simply recreate exactly what the user has drawn.

In this paper we develop an approach to generate stable and feasible structures for
a 2D physics environment, based solely on human sketches. These input sketches com-
prise of multiple axis-aligned, rectilinear (aka. orthogonal) polygons, that can be placed
next to and on top of each other. The output structures generated based on these sketches
are created using rectangular building blocks, with a pre-set number of different block
dimensions (shapes) available. Each generated structure should satisfy the requirements
of the environment (stable on flat ground, no overlapping blocks, etc.) while represent-
ing the original sketch’s design as closely as possible. Unlike prior sketch-based inter-
faces for creating content in physics-simulations, our proposed generation process does
not merely replicate the design of the input sketches, but also ensures the physical via-
bility and constraints of the generated structure are maintained. We believe that this task
is sufficiently complex and novel to be worthy of investigation, posing many different
challenges for the areas of physical and spatial reasoning.

1.1 Angry Birds

The specific example we will use to demonstrate the benefit of solving this problem
is for the popular video game Angry Birds. This game utilises a 2D physics-based en-
vironment and its levels often consist of one or more structures composed of multiple
rectangular blocks, providing a perfect example domain to evaluate our approach. An-
gry Birds has also been used for multiple AI competitions focused around generating
and solving levels [28]. Multiple level generators for Angry Birds currently exist, the
latest of which offer several options for designer influence and requirements [34, 11].
However, the level of control that designers have over the generated content is still very
minimal, offering little more than some simple specifications such as the size of the
structures or the number of block shapes available.

Another recent level generation paper for Angry Birds proposed a mixed-initiative
generation system that allows the user to design structures using a built-in drawing tool
[3]. This system is exceptionally primitive in its current form though, allowing users
to only draw blocks using a predefined grid and requiring that all blocks have either a
width or height of exactly one grid unit. This process essentially corresponds to users
selecting which squares of the gird they want filled using straight lines of a fixed width,
rather than sketching the whole structure’s design in the traditional sense. This results in
structures that are hugely simplified compared to more traditional Angry Birds levels.
This method also offers no real analysis on the stability of the generated structures,
leaving most of this to the human designer. Overall this approach can only be loosely
called a sketch-based generation method, and can only create vastly simplified versions
of structures that are atypical for Angry Birds.

The sketch-based generation system proposed in this paper allows for much greater
designer control in terms of the look and overall aesthetic of the desired structures,

Generating Stable, Building Block Structures from Sketches 3

whilst still ensuring that the generated levels are feasible within the game’s physics
engine. We demonstrate that our generation method provides a fast and effective way of
developing level prototypes, and that even inexperienced users can create detailed and
personalised structures with ease.

2 Structure Generation Approach

In order to generate stable, building block structures based on human drawn sketches,
several different sub-problems must be solved. Each of these can be treated as a separate
task with multiple possible approaches and solutions. This section provides detailed de-
scriptions and possible solutions for each of these problems, as well as other additional
features that either improve the end result or reduce the generator’s runtime.

Process Overview We first provide an overview of the entire generation process from
original sketch to final generated structure. 1) We identify separate polygons within the
sketch, as well as their corners. Based on this information, any non-rectangular poly-
gons are split into multiple separate rectangular components. All these rectangles are
then combined to make a full structure. 2) This structure is tested for stability, and suit-
ably adjusted if need be. 3) The rectangles within the structure are grouped based on
their position, size and shape, which helps improve the generation process. 4) Com-
posite block shapes are created by combining multiple regular blocks together. 5) All
rectangles are scaled to be closer in size to the actual block shapes available. 6) The
final generated structure is recursively built one block at a time, by selecting for each
scaled rectangle the block shape that is closest to its size and aspect ratio. If when se-
lecting a block shape any of several requirements are violated (structure is unstable,
blocks overlap, etc.) then the block is either moved or swapped out for a different block
shape. This continues until a structure that satisfies all requirements has been generated.
7) The generated structure is evaluated using a similarity heuristic calculation between
itself and the original sketch. Multiple different structures can often be created for the
same sketch by changing certain generation parameters (e.g. scaling method, structural
requirements, block adjustment options), which can then be ranked based on their sim-
ilarity heuristic values.

2.1 Polygon Splitting under Stability

Problem: Split a collection of sketched, roughly axis-aligned, rectilinear polygons into
a collection of rectangles that mimics the shape of the original input sketch; with an
optimisation criteria that the structure created by these output rectangles be stable on
a flat horizontal plane under the influence of gravity.

The first problem that we must solve is that of splitting polygons within our input
sketch into rectangles. To extract the properties of each polygon from the sketch, we
take advantage of the fact that any collection of non-intersecting rectilinear polygons
can be uniquely determined based on its vertices [25]. It is therefore possible to recreate
the shape of each polygon by simply identifying corners within the input sketch. For our
program we found that the Shi–Tomasi corner detection algorithm worked well enough

4 M. Stephenson et al.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1: Polygon splitting under stability: (a) an example polygon sketch, (b) corners
detected using our chosen algorithm (red dots), (c) corners with similar x-axis or y-
axis location values are made the same, (d) horizontal and vertical edges identified
between detected corners, (e) ray casting used to identify concave corners (red dots), (f)
horizontal lines added at concave corners, (g) rectangles that can be formed using these
lines / edges are identified, (h) ray casting used to identify and remove any rectangles
that are actually holes. Figure (i) shows the result of PSSA on a rotated polygon sketch,
whilst (j) shows the negative result of using the same split lines for both the non-rotated
and rotated input sketch (approach used by prior methods).

[29], but other more sophisticated methods are available [38, 6, 30, 39]. Note that if all
polygons within the sketch are already rectangular, then a simple minimum bounding
rectangle (MBR) detection algorithm is sufficient to identify the properties of each. We
now attempt to replicate the shape of each identified polygon using only rectangles.

Several papers have already proposed solutions to this problem of partitioning rec-
tilinear polygons [8, 26, 2, 15, 19, 10], but these methods have different optimisation
criteria (minimum number of rectangles, polynomial time approximation, maximum
smallest rectangle dimension, minimum stabbing number, etc.) and do not take the
physical nature of our scenario into account. We therefore propose a new algorithm
for polygon splitting under stability (PSSA). Accompanying diagrams for each step of
PSSA are shown in Figure 1.

Polygon Splitting under Stability Algorithm (PSSA)

(a) Take as input a collection of roughly axis-aligned, rectilinear polygons, orientated
such that the vertical axis is aligned with the gravitational force.

(b) Identify all corner positions P within the input using a chosen corner detection
algorithm (e.g. Shi–Tomasi).

(c) – For every point Pi in P , create an associated set Si of all points in P that
have x-axis location values within a certain number of pixels n of Pi’s x-axis
location.

Generating Stable, Building Block Structures from Sketches 5

– If any two sets Si and Sj share a common point (Si ∩ Sj 6= ∅), merge them
together to make a new set Sij that is associated with both i and j (Sij ←
Si ∪ Sj).

– For every point Pi in P , make the x-axis location value for Pi equal to the
average x-axis location value of all points in its associated set.

– Repeat the above three steps but this time for y-axis location values.
This step is done to account for any slight imperfections in the sketch, allowing
corners that were intended by the drawer to be the same in terms of their x-axis or
y-axis location to actually be so (i.e. turning polygons that are roughly axis-aligned
and rectilinear into polygons that are exactly axis-aligned and rectilinear).

(d) From these adjusted corner positions P we identify all horizontal and vertical edges
E that connect them, using the method described in [25].

(e) Ray casting is used to identify which corners in P are concave (vertex points with
an interior angle of 270 degrees) based on the number of edges in E that the ray
intersects.

(f) Additional horizontal lines are added to E at each concave corner in P . These
additional horizontal lines originate from each concave corner in both the left and
right directions, stopping once they intersect another edge in E.

(g) Based on this collection of lines E we can create a collection of possible rectangles
R that they can form.

(h) Ray casting is used to determine which rectangles in R are solid regions and which
are holes, removing those that are the latter from R.

By following the steps outlined in PSSA we can divide up a sketch of one or more
axis-aligned, rectilinear polygons into a collection of solid rectangular regions (R) that
accurately represents its shape. Due to the fact that only horizontal lines are added to the
sketch in step (f), we can guarantee that every rectangle created by PSSA touches an-
other rectangle on at least one of its horizontal edges. This guarantee heavily increases
the likelihood of R being stable, as it reduces the risk of certain rectangles having none
or minimal support. This also means that the same polygon may be split differently
based on its orientation, which is not the case for other prior methods. Figure 1 (i) rep-
resents the result of performing PSSA on the same polygon sketch from Figure 1 (a) but
rotated 90 degrees. Even though Figure 1 (i) contains more rectangles than if we used
the same split lines from the original non-rotated sketch, see Figure 1 (j), the result is far
more stable (all rectangles supported from below). This demonstrates how important it
is for an input sketch to be split differently based on its orientation, which is something
that other splitting methods do not do.

In all subsequent sections of this paper, the term block will be used to refer to a solid
rectangular region, and a collection of one or more axis-aligned, rectangular regions will
be referred to as a structure.

2.2 Stability Analysis / Adjustment

Problem: Estimate the stability of a structure that is resting on a flat horizontal plane
under the influence of gravity, and if the structure is unstable propose a modification
that makes it stable.

6 M. Stephenson et al.

(a) (b) (c)

Fig. 2: Original sketch (a), sketch after polygon splitting (b), and the adjusted sketch
after stability analysis (c).

Once all the rectangles (blocks) from our input sketch have been confirmed, we
next test for structural stability. Determining local stability for each block can be calcu-
lated quickly based on qualitative stability relations from the extended rectangle algebra
(ERA) [40], but using this alone often results in many unstable structures being falsely
classified as stable and vice versa. The actual stability of a given structure can be cal-
culated exactly, but only if all the relevant physics parameters of the involved objects
are known (mass, shape, density, friction, mass distribution, etc.) [23]. In addition, this
calculation often takes much longer than qualitative approaches and provides no guid-
ance as to how to correct or adjust an unstable structure. Using a qualitative stability
analysis approach allows us to estimate the stability of a structure much quicker, whilst
sacrificing some accuracy.

Formal structure representation Based on our input structure we can construct a
labelled directed graph where there is a node Ni for each block Bi within our structure
and directed edges to specify supporting relations between two blocks. We call this the
support graph (SG) of a structure. If the top horizontal edge of a block B1 is touching
the bottom horizontal edge of block B2 (i.e. B2 is resting on top of B1), then SG
contains an edge pointing from N1 to N2. For the sake of our definitions, the ground
that a structure is resting on can simply be taken to be another, albeit very large, block
(i.e. structure is resting on top of a ground block).

Definition 1. (Supporter, Support Depth, Supportees, Direct Supporter, Direct Suppor-
tees, Support Area): Given a support graph SG, if there exists a path from Ni to Nj ,
then block Bi is a supporter of block Bj (Bi supports Bj). Support depth SD(Ni, Nj)
is the length of the shortest path from Ni to Nj . A direct supporter of a block Bj is a
block Bi where SD(Ni, Nj) = 1. The supportees of block Bi is the set of all blocks that
Bi is a supporter of. The direct supportees of block Bi is the set of all blocks that Bi is
a direct supporter of. The support area for a block Bi is the horizontal interval between
its leftmost and rightmost direct supporters.

Using the example structure shown in Figure 2 (b) to help reinforce these defi-
nitions, Block C is a direct supporter of block D, an (indirect) supporter of block E,
a direct supportee of block B, and an (indirect) supportee of block A. Each of these
definitions can also be extended to apply to a collection of blocks rather than just a

Generating Stable, Building Block Structures from Sketches 7

single block. In this case the output is equal to the combined outputs when the defini-
tion is applied to each block within the collection, excluding blocks in the output that
are themselves members of the collection being queried. (i.e. if Q = [A,B,C], then
Supporters(Q) = [Supporters(A) ∪ Supporters(B) ∪ Supporters(C)]−Q)

Prior qualitative methods There are currently two main qualitative methods which
test for stability in 2D structures composed of multiple rectangles. The first method
tests the stability of a structure by iteratively calculating the mass centre for a set of
blocks from top to bottom, and checking if the vertical projection of this falls into the
set of blocks’ support area [20]. The second method determines structural stability by
taking each block within the structure and its supportees as a substructure, and testing
whether the vertical projection of its mass centre falls into the substructure’s support
area [14]. When applied to structures containing only axis-aligned blocks, it turns out
that both methods perform exactly the same calculations but in a different order. These
methods have a critical weakness however, in that all supporting blocks for the queried
block’s set of supportees are considered when calculating the supporting area. This
assumption that all blocks in a set are supported equally by all supporting blocks often
results in unstable structures being falsely classified as stable, such as the structure as
shown in Figure 2 (b). In this example, block F is only a supporter of block E, but is also
included when determining if blocks B, C and D are stable using these prior analysis
methods.

Proposed algorithm We therefore propose a new qualitative stability test that is able
to give a better approximation of stability compared to those previously described. For
this algorithm, we assume that the densities of all blocks are uniformly distributed. This
method does not produce perfect results, as qualitative approaches can only ever pro-
vide an estimate of stability, but is still able to detect the majority of unstable cases.
This method also provides detailed feedback as to why a particular structure is unsta-
ble, allowing us to immediately adjust the structure to account for this. Algorithm 1
describes our proposed stability test (Note. The vertical projection of the mass centre is
abbreviated to V PMC).

Unstable structure adjustment Based on the outcome of this stability test, we can
adjust an unstable structure to make it stable. By ordering the blocks in our input struc-
ture based on the y-axis position of their mass centre, our improved stability algorithm
will return both the highest unbalanced block (B is unbalanced at point P) and the side
of that block (left or right) that has too much weight on it. An additional support block
is then placed below either the left or right edge of this unbalanced block, depending
on which side has too much weight. This added block’s width is set to some default
minimum value, and extends downwards until it reaches another block (or the ground).
The stability of the new structure is then re-analysed, and this process repeats until the
structure is deemed stable.

Example 1. Using the same structure from Figure 2 (b), we provide a step-by-step ex-
ample to help explain our structure analysis / adjustment process:

8 M. Stephenson et al.

Algorithm 1 Stability Test
1: for all B in StructureBlocks do
2: Z ← [B]
3: X ← [B ∪ Supporters(B) ∪ Supportees(B)]
4: for all S in Supportees(B) do
5: if all Supporters(S) in X then
6: Z ← Z ∪ S
7: end if
8: end for
9: if (V PMC(Z) doesn’t fall into SupportArea(B) then

10: P ← point in SupportArea(B) closest to V PMC(Z)
11: if V PMC(Z) is left of P then
12: A← area right of P
13: end if
14: if V PMC(Z) is right of P then
15: A← area left of P
16: end if
17: for all N in Supportees(B) /∈ Z do
18: if N overlaps A then
19: Z ← Z ∪N
20: end if
21: end for
22: if (V PMC(Z) doesn’t fall into SupportArea(Z) then
23: if V PMC(Z) is left of P then
24: Return False . B is unbalanced at point P (left)
25: end if
26: if V PMC(Z) is right of P then
27: Return False . B is unbalanced at point P (right)
28: end if
29: end if
30: end if
31: end for
32: Return True

– Our algorithm first checks the stability of block E. As block E has no supportees,
the set Z simply contains block E (Z=[E]) (lines 2-8). The vertical projection of
the mass centre of block E falls into its support area (horizontal interval between
blocks D and F) (line 9) so this block is stable.

– Next we check the stability of block D. Block D has block E as a supportee, but as
block E has a supporter that is not in X (block F), it will not be added to the set Z
(Z=[D]) (lines 2-8). the vertical projection of the mass centre of block D falls into
its support area (block C) (line 9) so this block is stable.

– Next we check the stability of block C. Block C has two supportees, blocks D and
E. Block E is not added to the set Z for the same reason as before, but all supporters
of block D are in X , so it is added to the set Z (Z=[C, D]) (lines 2-8). The vertical
projection of the mass centre of the set of blocks [C, D] does not fall into the
support area of block C (just block B) (line 9), so potentially this block is unstable.

Generating Stable, Building Block Structures from Sketches 9

P is set to the rightmost point in block B, and A is set to the area left of P (lines
10-16). None of the supportees of block C that aren’t in Z (only block E in this
case) overlap A, so Z remains unchanged (Z=[C, D]) (lines 17-21). As the vertical
projection of the mass centre of Z does not fall into its support area (block B) (line
22), we conclude that the structure is unstable and that block C is unbalanced on
the right side of point P (lines 23-28).

– Having determined both the highest unbalanced block (C) and the side of it with
too much weight (right) we add an additional support block below the right edge
of block C, see Figure 2 (c). The stability of this new structure is then re-analysed,
but this time it is found to be stable.

2.3 Grouping Block Sets

Problem: Define and identify known rules / relations between blocks or sets of blocks
within a given structure based on their properties, that need to be satisfied during the
generation process.

Now that all blocks have been finalised, we can group blocks within the structure
together based on their position, size and shape. This reasoning is not essential to the
structure generation process, but can help to significantly improve its overall speed and
accuracy by eliminating unfeasible or undesirable possibilities early when selecting
block shapes. Two different systems are used to group similar blocks or sets of blocks
together, referred to as the height grouping and shape grouping methods. Relations
within each of these groupings are also transitive.

Height Grouping Rule: Two sets of blocks are in the same height group if they
share both a direct supporter and a direct supportee. If two sets of blocks are in the
same height group, then the combined heights of all blocks in each set must be the
same. Using the same example from Figure 2 (b), we can use this rule to infer that the
combined heights of blocks A, B, C and D, must be the same as the height of block
F. By following this rule, we can significantly reduce the total runtime of our structure
generation process by helping to detect unfeasible block shape combinations early when
selecting block shapes for our final generated structure (used later in section 2.6).

Shape Grouping Rule: Two blocks (B1 and B2) are in the same shape group if the
following conditions hold:

– B1width ≈ B2width (within set error percentage).
– B1height ≈ B2height (within set error percentage).
– (B1x ≈ B2x) ∨ (B1y ≈ B2y) (within set error percentage).
– There are no other blocks between B1 and B2.

(Note. the x-axis and y-axis location values for a block (Bx, By) are defined by its
mass centre).

Any blocks within the same shape group must have the same block shape. The shape
grouping rule is not as structurally important as the height grouping rule, but often leads
to a final generated structure that is much closer to the original sketch (i.e. the shape
grouping rule ensures that blocks in our input sketch which were intended by the drawer
to be the same shape also have the same shape in the final generated structure).

10 M. Stephenson et al.

2.4 Composite Blocks

Problem: Generate additional composite block shapes within pre-defined size limits,
given a collection of regular rectangular block shapes.

As well as the regular block shapes that are available, it is also possible to combine
multiple blocks together to create additional composite blocks with new dimensions.
While initially similar in many regards to the rectangle packing problem [18, 9], the task
of creating suitable composite blocks for 2D structures has many different considera-
tions. Unlike traditional packing problems we do not have a limited number of blocks,
only a limited number of block shapes. Our proposed process for creating different
composite block options, within predefined limits on the maximum width Widthmax

and height Heightmax that the block can have, is as follows:
Given a collection of N regular rectangular block shapes, sort them together into a

set of groupings G based on their height. Remove from G any groupings that contain
blocks with a height greater than Heightmax. For each grouping Gk in G perform the
following:

Identify all ordered combinations Ck of blocks within Gk, that when placed hori-
zontally next to each other give a width less than Widthmax. Each combination Cki in
Ck has three properties, the number of blocks within it NumberBlocks(Cki), its total
width Width(Cki), and the locations of all connection points where one block ends
and the next begins ConnectPoints(Cki). Remove from Ck any combination Cki if
there exists any another combination Ckj where the following is true:

– Width(Cki) = Width(Ckj)
– NumberBlocks(Cki) > NumberBlocks(Ckj)
– ConnectPoints(Cki) ⊂ ConnectPoints(Ckj)

This removal process eliminates blocks combinations in Ck that are the same width
as another combination, but are guaranteed to be equally or less structurally stable.

For each combination Cki in Ck, perform the following:

1. B = Cki

2. Dki ← ∅
3. Add B to the set Dki

4. Reverse the order of the blocks in Cki

5. Add Cki as a new extra row of blocks on top of B
6. If the height of B is less than Heightmax, Go to step 3

This gives us a set of composite block shapes Dki for each combination Cki in Ck.
Each of these Dki sets can then be merged to give a combined set of composite block
shapes Dk for all combinations in Ck. All Dk sets from each Gk grouping can then
be merged to give a final set of additional composite block shapes D, with dimensions
not possible using regular block shapes alone. Comparing the generated structures in
Figure 3 against the original rectangles in Figure 1 (h), demonstrates how multiple real
blocks can be used to represent a single sketched block.

Note. In all subsequent sections, the term block shapes includes both regular and
composite block shapes.

Generating Stable, Building Block Structures from Sketches 11

(a) Scalemax (b) Scalemid (c) Scalemin

Fig. 3: Three example generated structures created from the same sketch in Figure 1,
but using different scale calculations.

2.5 Block Scaling

Problem: Scale a sketched structure so that it better fits the block shapes available.
Another problem that must be solved before the final structure can be generated,

is how to scale the sketched image such that the blocks within it are closer in size to
the “real” block shapes available. If the input sketch is too small or too big, then the
closest available real block is likely to always be the same. Without a fixed point of
reference between the input sketch and the desired generated level, this problem has no
perfect solution. We instead propose five different scale calculation options, the results
of which can then be compared to determine the best approach:

– Scalemax = Max(SBD)/Max(RBD)
– Scalemin = Min(SBD)/Min(RBD)
– Scalemid = MidRange(SBD)/MidRange(RBD)
– Scalemean = Mean(SBD)/Mean(RBD)
– Scalemedian = Median(SBD)/Median(RBD)

(SBD = sketched block dimension, RBD = real block dimension)
In more understandable terms, each scale calculation option associates one of the

rectangle dimensions in the sketch with one of the real block dimensions available, i.e.
using the Scalemax calculation associates the largest rectangle dimension in our sketch
with the largest real block shape dimension. Using each of these scale options often
results in very distinctive generated structures with different block sizes and shapes,
see Figure 3. These structures can then be ranked based on their similarity to the origi-
nal sketch, with further details on this comparison procedure provided in the Structure
Ranking section.

2.6 Selecting Block Shapes

Problem: Given a sketched structure with rectangular blocks of any size / shape, gen-
erate a stable and feasible structure using our available block shapes that is similar in
design to the original sketch

12 M. Stephenson et al.

Having described all the necessary components of our generator, we are now ready
to start generating the final structure. Given a sketched structure S made of multiple
rectangular blocks, we order the blocks using a bottom-up, depth first search algo-
rithm (supporters always placed before the blocks they support). This block ordering
(S1,S2,Sn) determines the order in which we select the block shapes for our final
generated structure G. To generate the ith block for G, we first select the real block shape
Shapei (including composite block shapes) that is closest to the shape of Si (smallest
non-overlapping region) and which hasn’t already been tried for the current G defini-
tion before. A new block Gi with the shape of Shapei is then added to G in the same
horizontal position as Si, and is vertically placed on top of its supporters determined
by the support graph of S (due to our prior block ordering these will already have been
added to G). Five requirement checks are then carried out to make sure that Gi’s shape
and location are valid:

– R1: Gi doesn’t overlap another block in G.
– R2: G satisfies all grouping requirements of S (for both height and shape group-

ings).
– R3: The support graph of G is consistent with the support graph of S (all blocks are

supporters / supportees of those that they are supposed to be).
– R4: Create a new structure F , that contains all blocks currently in G, as well as

any blocks Sj in S where Gj is not in G (i.e. blocks already added to G use their
real block shape, blocks that are not yet added to G use their sketched block shape).
Run our previously described stability test on the structure F , but using the support
graph of S. This stability test must return True (structure stable).
(Note. even through the support graph of S may not match the support graph of F ,
we can still use the support graph of S for determining supporters, supportees and
support areas when performing our stability test on F).

– R5: If Shapei is a composite block shape, then all blocks that make up Gi’s bottom
row must be locally stable.

If any of these requirements (R1, R2, R3, R4, R5) are violated, then one of three
possible adjustment options is performed:

– A1: Move Gi horizontally either left or right by a small amount.
– A2: Swap Shapei for the next closest block shape that has not already been tried

for the current G definition before.
– A3: Remove both Gi and Gi−1 from G (i.e. backtracking).

After carrying out an adjustment (A1, A2, A3) the structure requirements (R1, R2,
R3, R4, R5) are re-tested. Adjustment A1 is carried out first, in each direction for sev-
eral distance values. Next, adjustment A2 is carried out for several different alternative
block shapes. Lastly, if the structure still does not satisfy our requirements after multi-
ple shape changes and position shifts, then adjustment A3 is performed. This process
of selecting block shapes, testing structure requirements and performing adjustments,
repeats recursively until either a final viable structure that satisfies all requirements is
generated or all block shape combinations have been tested (structure generation not
possible). Algorithm 2 provides a summative description of this block shape selection
method.

Generating Stable, Building Block Structures from Sketches 13

Algorithm 2 Selecting Block Shapes

1: GeneratedStructure← ∅
2: for all Block in SketchedStructure do
3: NewBlock ← Block
4: Shape(NewBlock)← ClosestBlockShape(Block)
5: add NewBlock to GeneratedStructure
6: A1tries,A2tries← 0
7: while any (R1, R2, R3, R4, R5) not satisfied do
8: if A1tries < A1triesmax then
9: do adjustment A1

10: else if A2tries < A2triesmax then
11: do adjustment A2

12: A1tries← 0
13: else
14: do adjustment A3

15: A1tries,A2tries← 0
16: end if
17: end while
18: end for
19: Return GeneratedStructure

2.7 Structure Ranking

Problem: Compare / rank different generated structures based on their similarity to the
original sketch.

As there are several different scaling options available, as well as other adjustable
generation parameters, many different structures can usually be generated from the
same sketch. Better results can often be achieved by generating multiple structures and
then comparing them to determine which is best. This selection can be done manually
based on user preference, but can also be done automatically using a similarity heuristic
which measures how similar the generated structure is to the original sketch (after poly-
gon splitting but before stability analysis). Four different measures of error are used in
this heuristic calculation:

– Errorratio = Average percentage difference between each block’s generated and
sketched aspect ratios.

– Errorarea = Average difference between each block’s generated and sketched
areas.

– Errorposition = Average Euclidean distance between each block’s generated and
sketched locations, relative to the structure’s centre of mass.

– Erroradded = Weighted sum of the areas of all blocks added during stability anal-
ysis.

– SimilarityHeuristic = −(Errorratio∗Errorarea∗Errorposition)−Erroradded

(Note. Both the sketched and generated structures are first scaled so that their total areas
equal some arbitrary value).

14 M. Stephenson et al.

Note that this similarity heuristic value is not normalised. In order to normalise this
heuristic we would require a worst-case example to base the similarity value of -1 on,
but it is not clear what a worst possible sketch would look like without setting some
arbitrary bounds on the size and number of blocks for a generated structure.

A full quantitative test for stability is also conducted and if a structure is found to be
unstable it is immediately rejected, thus guaranteeing that all generated structures are
stable.

3 Evaluation

In order to evaluate our proposed generation algorithm, we investigated its ability to
create levels for the video game Angry Birds based on human sketches. As previously
mentioned, this game uses a suitable 2D physics engine and its levels often consist
of one or more structures made from multiple rectangular blocks, with eight different
block shapes available in the game. All experiments were performed on an Ubuntu 64-
bit desktop PC with an i7-4790 CPU and 16GB RAM.

3.1 Experimental Results

Stability Analysis Comparison We first compared the accuracy of our new qualitative
stability analysis method against the two main state-of-the-art techniques [20, 14]. This
was done by generating 1000 random axis-aligned, rectilinear polygons using the ap-
proach described in [36]. Each of these polygons was then divided into rectangles using
our polygon splitting algorithm and the subsequent structures analysed by all three sta-
bility methods. The exact stability of each generated structure was calculated using the
algorithm described in [23]. Out of the 1000 polygons, 632 were stable whilst 368 were
unstable. Neither our proposed method nor those previously described gave any false
negatives (classified unstable but actually stable). However, both older methods each
had 44 false positives (classified stable but actually unstable) whilst ours had only 18.
This result indicates that our proposed stability analysis method performs significantly
better than previous techniques when applied to our problem, and is able to accurately
detect the vast majority of unstable structures. In all 350 cases where our stability anal-
ysis method correctly detected an unstable structure, it was also able to successfully
adjust the structure to make it stable.

Similarity Heuristic Verification We also evaluated our proposed similarity heuris-
tic to determine whether it provides a good measure of structural similarity between a
sketch and a generated structure. We recruited 15 participants, 11 male and 4 female
with an average age of 25.1, and asked each to draw 6 axis-aligned, rectilinear poly-
gons of any design they liked using a simple pen and paper interface. These drawings
were then scanned and our proposed generator used to create five different Angry Birds
structures for each sketch, using our five different scaling calculations. These structures
were then ranked by both the user and our similarity heuristic. The average Spearman’s
rank correlation coefficient over all 90 sketches was 0.834, indicating that our heuristic

Generating Stable, Building Block Structures from Sketches 15

value accurately measures perceived similarities between sketched and generated struc-
tures. Most participants were also extremely impressed by how accurately their original
sketch could be represented within Angry Birds. The average generation time for each
structure was 7.34 seconds and the average similarity heuristic value for the closest
(best) generated structure was -21.55.

Recreating Original Angry Birds Levels To evaluate the overall performance of our
entire generator, we investigated its ability to accurately replicate original levels from
Angry Birds, based on human sketches of these same levels. Five different levels were
selected from the “Poached Eggs” episode, specifically levels 1, 9, 13, 16, and 21, each
of which contains a single complex structure. We collected sketches for each of these
structures from 6 different participants, 4 male and 2 female with an average age of
22.8, giving a total of 30 structure sketches. Using our proposed similarity heuristic, we
compared each sketch against both its closest generated structure and the original level
it was based on. This allows us to compare how accurately our generation algorithm
can replicate the sketched structure, compared to how closely the sketch resembles the
original level. The average similarity value between each sketch and the level generated
from it was -14.08, whilst the average similarity value between each sketch and the orig-
inal level it was based on was -50.84. A breakdown of the average similarity heuristic
scores for each level is displayed in Table 1. From these results we can see that our
generator is able to replicate each sketched structure much closer than the average user
can draw that same level.

Level # 1 9 13 16 21
Original −58.4 −77.5 −23.6 −27.7 −67.0
Generated −13.1 −15.9 −14.7 −8.58 −18.1

Table 1: Average similarity heuristic values when comparing human sketches against
the original and generated structures.

The correlation coefficient for the similarity values between each sketch and both its
original and generated structures is 0.477, indicating that there is a moderate positive
relationship between these similarity scores for each level. This is probably because
sketches that are further away from the original level are less likely to fulfil our gener-
ation requirements (e.g. overlapping blocks or unstable). Our generator will attempt to
correct these issues by adjusting the structure, resulting in a worse similarity heuristic
value. Figure 4 provides some examples from this experiment. The average generation
time for each structure was 6.51 seconds.

When examining these results, please be aware that similarity heuristic values are
only intended for comparing different generated structures based on the same input
sketch to determine which is the closest, and should not be compared between different
original structures (i.e. the similarity heuristic for a sketch based on a specific structure
should not be compared against the similarity heuristic for a sketch based on a different
structure).

16 M. Stephenson et al.

(a) (b) (c) (d) (e)

Fig. 4: The original structure (a), the best and worst human sketches (b)/(d), and the
closest generated structures from these sketches (c)/(e)
Row 1 (level 1): Similarity(b,c) = -6.86, Similarity(b,a) = -14.69, Similarity(d,e)
= -22.10, Similarity(d,a) = -92.39
Row 2 (level 9): Similarity(b,c) = -13.30, Similarity(b,a) = -17.62, Similarity(d,e)
= -18.56, Similarity(d,a) = -127.35
Row 3 (level 13): Similarity(b,c) = -7.41, Similarity(b,a) = -19.55, Similarity(d,e)
= -17.45, Similarity(d,a) = -39.48
Row 4 (level 16): Similarity(b,c) = -4.62, Similarity(b,a) = -16.26, Similarity(d,e)
= -11.93, Similarity(d,a) = -64.24
Row 5 (level 21): Similarity(b,c) = -8.24, Similarity(b,a) = -12.35, Similarity(d,e)
= -35.01, Similarity(d,a) = -82.79

3.2 Discussion and Future Work

The results of our evaluation demonstrate that our proposed generator can recreate both
new and existing structures based solely on 2D human sketches, with a significant de-
gree of accuracy. The spatial reasoning performed by our generator guarantees that all
created structures are both stable and feasible within the required environment, whilst
still ensuring that the users design is followed closely. Participants in our experiments

Generating Stable, Building Block Structures from Sketches 17

were able to use and understand the sketch-based interface easily, even if they had
never previously played Angry Birds. Our methodology also possesses a large degree
of flexibility, allowing for the incorporation of new requirements, desirable qualities or
available block shapes when generating structures.

Outside of the obvious application to creating levels for physics-based games, this
work has multiple other uses in a wide variety of different domains and situations. One
potential example could be the possibility of a sketch-based interface for human-robot
communication, that would allow users to intuitively explain how to complete complex
physical tasks such as stacking items. The modularity of our method also allows spe-
cific sections to be improved or removed without significantly affecting others. Certain
components of our generation process could be integrated with other already existing
sketch-based interfaces for physics simulations, particularly those focused around cog-
nitive science and education [13].

Future work for this research would naturally involve extending the range of pos-
sible structures that could be generated. Improvements to the generator might allow
sketches to contain non-rectangular or angled blocks, and perhaps the ability to gener-
ate full 3D structures using technology such as stereoscopic displays and haptic inter-
faces [24]. These additions would require significant alterations to be made to both the
stability and polygon splitting algorithms, as well as more advanced computer vision
techniques for detecting multiple block shapes. Another more conceptual improvement
would be to try and understand what certain users are actually attempting to represent
in their sketched structures, rather than directly replicating what they draw.

4 Conclusions

In this paper, we have presented an approach to construct formal structure representa-
tions of rough human sketches using a limited number of rectangular block shapes, that
accurately represents the original inputs while also ensuring that all physical require-
ments are satisfied. This combination of procedural content generation with sketch-
based interfaces can help designers focus on what they want to create at a higher ab-
stract level, without worrying about the physical requirements and limitations of the
environment. This provides a way for inexperienced users to create their own content
easily, whilst also allowing more experienced designers to rapidly construct prototypes
for their ideas. With the huge surge in procedural content generation research over the
past few years, it is not only feasible but also essential that more sophisticated ways
to design virtual content are developed. We are confident that our proposed method
represents a significant step forward in the task of allowing users to easily create per-
sonalised, complex and reliable digital content for physics-based environments, and
presents a substantial contribution to the field of sketch-based and AI assisted content
generation.

18 M. Stephenson et al.

References

1. Alvarado, C., Davis, R.: SketchREAD: A multi-domain sketch recognition engine. In: Pro-
ceedings of the 17th Annual ACM Symposium on User Interface Software and Technology.
pp. 23–32 (2004)

2. Anil Kumar, V.S., Ramesh, H.: Covering rectilinear polygons with axis-parallel rectangles.
In: Proceedings of the Thirty-first Symposium on Theory of Computing. pp. 445–454 (1999)

3. Campos, C.R.F.G., de Oliveira Sa, W., Teixeira, J.M.G., Lelis, L.: Mixed-initiative tool to
speed up content creation in physics-based games. In: Proceedings of SBGames 2017. pp.
590–593 (2017)

4. Cheema, S., LaViola, J.: PhysicsBook: A sketch-based interface for animating physics dia-
grams. In: Proceedings of the 2012 ACM International Conference on Intelligent User Inter-
faces. pp. 51–60. IUI ’12 (2012)

5. Costa, A., Pereira, J.: SketchyDynamics: A library for the development of physics simulation
applications with sketch-based interfaces. International Journal of Interactive Multimedia
and Artificial Intelligence 2(3), 23–30 (2013)

6. Costagliola, G., Rosa, M.D., Fuccella, V.: Rankfrag: A machine learning-based technique
for finding corners in hand-drawn digital curves. In: International Conference on Distributed
Multimedia Systems. pp. 29–38 (2015)

7. Davis, R.: Magic Paper: Sketch-understanding research. Computer 40(9), 34–41 (2007)
8. Durocher, S., Mehrabi, S.: Computing partitions of rectilinear polygons with minimum stab-

bing number. In: Computing and Combinatorics. pp. 228–239 (2012)
9. E. Korf, R.: Optimal rectangle packing: New results. In: Proceedings of the 14th International

Conference on Automated Planning and Scheduling. pp. 142–149 (2004)
10. Ferrari, L., Sankar, P., Sklansky, J.: Minimal rectangular partitions of digitized blobs. Com-

puter Vision, Graphics, and Image Processing 28(1), 58 – 71 (1984)
11. Ferreira, L.N., Toledo, C.: Tanager: A generator of feasible and engaging levels for Angry

Birds. IEEE Transactions on Computational Intelligence and AI in Games (2017)
12. Field, M., Valentine, S., Linsey, J., Hammond, T.: Sketch recognition algorithms for compar-

ing complex and unpredictable shapes. In: Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence. pp. 2436–2441. IJCAI’11 (2011)

13. Forbus, K., Usher, J., Lovett, A., Lockwood, K., Wetzel, J.: CogSketch: Sketch understanding
for cognitive science research and for education. Topics in Cognitive Science 3(4), 648–666
(2011)

14. Ge, X., Renz, J., Zhang, P.: Visual detection of unknown objects in video games using qual-
itative stability analysis. IEEE Transactions on Computational Intelligence and AI in Games
8(2), 166–177 (2016)

15. Gunther, O.: Minimum k-partitioning of rectilinear polygons. Journal of Symbolic Compu-
tation 9(4), 457 – 483 (1990)

16. Hammond, T., Davis, R.: Tahuti: a geometrical sketch recognition system for UML class
diagrams. In: SIGGRAPH (2006)

17. Hendrikx, M., Meijer, S., Velden, J.V.D., Iosup, A.: Procedural content generation for games:
A survey. Trans. Multimedia Comput. Commun. Appl. 9(1), 1–22 (2013)

18. Huang, E., Korf, R.E.: New improvements in optimal rectangle packing. In: Proceedings of
the 21st International Jont Conference on Artifical Intelligence. pp. 511–516 (2009)

19. Imai, H., Asano, T.: Efficient algorithms for geometric graph search problems. SIAM Journal
on Computing 15(2), 478–494 (1986)

20. Jia, Z., Gallagher, A., Saxena, A., Chen, T.: 3D-based reasoning with blocks, support, and
stability. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)

Generating Stable, Building Block Structures from Sketches 19

21. Johnston, A., Carneiro, G., Ding, R., Velho, L.: 3-D modeling from concept sketches of hu-
man characters with minimal user interaction. In: International Conference on Digital Image
Computing: Techniques and Applications (DICTA). pp. 1–8 (2015)

22. Liapis, A., Yannakakis, G.N., Togelius, J.: Sentient Sketchbook: Computer-aided game level
authoring. In: Proceedings of the 8th Conference on the Foundations of Digital Games. pp.
213–220 (2013)

23. M. Blum, A.G., Neumann, B.: A stability test for configurations of blocks. Tech. rep., Mas-
sachusetts Institute of Technology (1970)

24. Onkar, P., Sen, D.: Controlled direct 3d sketching with haptic and motion constraints. Inter-
national Journal of Computer Aided Engineering and Technology 8 (2016)

25. O’Rourke, J.: Uniqueness of orthogonal connect-the-dots. Machine Intelligence and Pattern
Recognition 6, 97–104 (1988)

26. O’Rourke, J., Tewari, G.: The structure of optimal partitions of orthogonal polygons into fat
rectangles. Computational Geometry 28(1), 49 – 71 (2004)

27. Ouyang, T.Y., Davis, R.: Recognition of hand drawn chemical diagrams. In: Proceedings of
the 22Nd National Conference on Artificial Intelligence. pp. 846–851. AAAI’07 (2007)

28. Renz, J., Ge, X., Verma, R., Zhang, P.: Angry Birds as a challenge for artificial intelligence.
In: Proceedings of the 30th AAAI Conference. pp. 4338–4339 (2016)

29. Shi, J., Tomasi, C.: Good features to track. In: 1994 Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition. pp. 593–600 (1994)

30. Shpitalni, M., Lipson, H.: Classification of sketch strokes and corner detection using conic
sections and adaptive clustering. ASME Journal of Mechanical Design 119 (2001)

31. Smelik, R., Tutenel, T., de Kraker, K., Bidarra, R.: A declarative approach to procedural
modeling of virtual worlds. Computers & Graphics 35(2), 352 – 363 (2011)

32. Smith, G., Whitehead, J., Mateas, M.: Tanagra: A mixed-initiative level design tool. In: Pro-
ceedings of the Fifth International Conference on the Foundations of Digital Games. pp.
209–216. FDG ’10 (2010)

33. Snodgrass, S., Ontañón, S.: Controllable procedural content generation via constrained
multi-dimensional markov chain sampling. In: Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence. pp. 780–786. IJCAI’16, AAAI Press (2016)

34. Stephenson, M., Renz, J.: Generating varied, stable and solvable levels for Angry Birds style
physics games. In: 2017 IEEE Conference on Computational Intelligence and Games (CIG).
pp. 288–295 (2017)

35. Togelius, J., Yannakakis, G.N., Stanley, K.O., Browne, C.: Search-based procedural content
generation: A taxonomy and survey. IEEE Transactions on Computational Intelligence and
AI in Games 3(3), 172–186 (2011)

36. Tomás, A.P., Bajuelos, A.L.: Quadratic-time linear-space algorithms for generating orthogo-
nal polygons with a given number of vertices. In: Computational Science and Its Applications
– ICCSA. pp. 117–126 (2004)

37. Turquin, E., Cani, M.P., Hughes, J.F.: Sketching garments for virtual characters. In: SIG-
GRAPH (2007)

38. Wolin, A., Paulson, B., Hammond, T.: Sort, merge, repeat: An algorithm for effectively find-
ing corners in hand-sketched strokes. In: Proceedings of the 6th Eurographics Symposium
on Sketch-Based Interfaces and Modeling. pp. 93–99 (2009)

39. Xiong, Y., LaViola, Jr., J.J.: Revisiting ShortStraw: Improving corner finding in sketch-based
interfaces. In: Proceedings of the 6th Eurographics Symposium on Sketch-Based Interfaces
and Modeling. pp. 101–108. SBIM ’09, ACM, New York, NY, USA (2009)

40. Zhang, P., Renz, J.: Qualitative spatial representation and reasoning in Angry Birds: The ex-
tended rectangle algebra. In: Knowledge Representation and Reasoning Conference (2014)

