
Generating Varied, Stable and Solvable Levels for
Angry Birds Style Physics Games

Matthew Stephenson
Research School of Computer Science

Australian National University
Canberra, Australia

matthew.stephenson@anu.edu.au

Jochen Renz
Research School of Computer Science

Australian National University
Canberra, Australia

jochen.renz@anu.edu.au

Abstract—This paper presents a procedural level generation
algorithm for physics-based puzzle games similar to Angry Birds.
The proposed algorithm is capable of creating varied, stable and
solvable levels consisting of multiple self-contained structures
placed throughout a 2D area. The work presented in this paper
builds and improves upon a previous level generation algorithm,
enhancing it in several ways. The structures created are evaluated
based on a updated fitness function which considers several key
structural aspects, including both robustness and variety. The
results of this analysis in turn affects the generation of future
structures. Additional improvements such as determining bird
types, increased structure diversity, terrain variation, difficulty
estimation using agent performance, stability and solvability ver-
ification, and intelligent material selection, advance the previous
level generator significantly. Experiments were conducted on the
levels generated by our updated algorithm in order to evaluate
both its optimisation potential and expressivity. The results show
that the proposed method can generate a wide range of 2D levels
that are both stable and solvable.

I. INTRODUCTION

Procedural level generation (PLG) is the automatic creation
of game levels without manual interaction and has become a
key area of investigation for video game research [1], [2]. PLG
can be used to generate a large number of levels in a short
period of time. This can greatly reduce a game’s development
cycle and memory requirements [3], as well as dramatically
increasing the amount of available content. The levels created
can also be tailored to the user’s playstyle, providing a unique
and original gameplay experience [4].

Physics-based puzzle games such as Angry Birds, Bad
Piggies, Crayon Physics and World of Goo have increased
in popularity in recent years and provide many interesting
challenges for PLG. Several papers have previously explored
the use of PLG for physics-based puzzle games, most notably
for the Cut the Rope [5], [6], [7] and Angry Birds games [8],
[9], [10], [11]. The physics constraints employed in these types
of games create many problems for PLG and make evaluating
the quality of levels difficult. The playability/solvability of
generated levels is particularly difficult to confirm, due to the
exceptionally large state and action spaces [12]. Although the
proposed generator is designed specifically for the Angry Birds
elements and environment, the techniques used can be applied
to many other games which share similar mechanics and level
designs.

This paper presents an enhanced search-based procedural
level generator for Angry Birds and other similar physics-
based puzzle games. This algorithm is an updated version of
that proposed in [13], [14] with several important improve-
ments being made. One of the major changes we propose is
to the fitness function, which was originally designed to create
structures with specific properties such as height, width and
number of blocks. Our revised approach evaluates structures
on a much higher level, with new parameters for structure
robustness, variety of block types, and pig dispersion, being
used instead. Another significant change is that Angry Birds
agents are now used to determine the number of birds provided
for a generated level, as well as for estimating its difficulty
and verifying that it is solvable. Additional improvements to
the level generation process, including more varied structure
designs, determining suitable placement positions for TNT,
intelligent bird type and material selection, and variable ter-
rain shapes, were also implemented. These combined updates
significantly advance the capabilities of this level generator
beyond that of the original.

Several experiments were conducted to analyse the expres-
sivity of our level generator and to determine its capabilities.
Metrics such as frequency, linearity, density and leniency were
used to describe the characteristics of the generated levels. The
optimisation potential of our algorithm was also investigated,
as was the performance of different Angry Birds agents in
solving the generated levels.

II. ANGRY BIRDS OVERVIEW

Angry Birds is a physics-based puzzle game where the
player uses a slingshot to shoot birds at structures composed of
blocks, with pigs placed within or around them. The player’s
objective is to kill all the pigs using the birds provided. A
typical Angry Birds level, as shown in Figure 1, contains a
slingshot, birds, pigs and a collection of blocks arranged in one
or more structures. Each bird is assigned one of five different
types (red, blue, yellow, black or white) and each block is
assigned one of three materials (wood, ice or stone). TNT can
also be placed within a level and will explode when hit by
another object. The source code for the official Angry Birds
game is not currently available, so a Unity-based clone created
by Lucas Ferreira was used instead [8].

Fig. 1: Screenshot of a level from the Angry Birds game.

Before describing our algorithm’s methodology, we will
define some terms which will be used throughout this paper.
A block is any object within the level that can be moved, apart
from a bird, pig or TNT. Twelve different blocks are available
within the unity clone, see Figure 2. Blocks one to eight are
referred to as “regular” blocks, whilst blocks nine to twelve
are called “irregular”. A platform is any surface, apart from
the ground of the level, which has a fixed position.

III. ORIGINAL LEVEL GENERATOR

The proposed level generator described in this paper, builds
upon a previous Angry Birds level generator, originally de-
scribed in [13], [14]. It creates Angry Birds levels consisting
of a collection of independent structures, constructed using the
eight regular blocks available. Five of the regular blocks (2, 5,
6, 7 and 8) can also be rotated 90 degrees to give a different
block shape. This creates a total of 13 different regular block
types. A probability table is used to determine the likelihood
of a particular block type being selected. Each block type is
given a probability of selection, with all probabilities summing
to one. Structures generated using this algorithm are made
up of rows, with each row consisting of a single block type.
These structures can have multiple peaks and feature a variety
of placement methods for each row of blocks. Local stability
requirements are enforced and more rows can be added until
the structure reaches the desired size. Each block is also
randomly assigned one of the three possible materials.

These structures are then distributed throughout the level,
either on the ground (ground structures) or atop floating
platforms (platform structures). The number of ground and
platform structures, as well as their respective width and
height limits, can be determined either manually or by random
selection.

Once these structures have been placed, the level is then
populated with pigs and irregular blocks, distributed on and
within the created structures. Possible positions for pigs are
identified and ranked based on a combination of structural
protection (how much the surrounding blocks shield the pig
from incoming shots), location dispersion (how far away this
position is from other pig locations) and occupancy estimation
(how likely it is for other objects to fall onto the pig). Pigs
are then placed using this ranking until a desired number of
pigs is reached. Any remaining locations are then substituted
with randomly selected irregular blocks.

Fig. 2: The twelve different block types available.

Lastly, the generator attempts to identify and protect critical
weak points throughout the level. A weak point is defined as
a block within a structure that can be hit directly by a player’s
shot (reachable) and that if removed would affect a large
number of other blocks and/or pigs. If a block is identified
as a weak point within a structure then it is protected using
one of three methods. The first method is to place a column of
blocks to the left of the structure, such that the weak point is
no longer reachable. The second method is to add more blocks
to the structure row that contains the weak point, reducing the
number of objects that would be affected by its removal. The
third method is to simply set the material of the weak point
to stone.

The number of birds that the player is given to solve the
level is calculated using a simple formula that takes into
account the number of structures and pigs within the level.
The types of these birds are not considered by the original
level generator.

For a more in depth explanation of the baseline structure and
level generation processes, as well as examples of generated
levels, please refer to the original papers.

IV. IMPROVED LEVEL GENERATOR

This section of the paper describes the enhancements that
have been made to the original level generator, to provide
a more varied and robust method for creating levels. This
includes processes for creating structures with multiple block
types within a single row, terrain variation, TNT placement,
global stability analysis, intelligent material and bird type
selection, and using AI agents to determine the number of
birds. Examples of fully generated levels can be found at the
end of this section, demonstrating the enhancements described
here.

A. Block Swapping

One of the main limitations of the original level generator
was that each row of a structure always contained only one
block type, significantly reducing the variety of structures that
could be created. We therefore propose a simple modification
that allows multiple block types within a single row. After a
structure has been generated we attempt to replace some of
the blocks in the structure with other block types that have
the same height, a process referred to as “block swapping”.
For each block within a generated structure, we record a list
of any other block types that have the same height as it and
would still satisfy all local stability requirements if used as

a replacement. Each block then has a random chance (S) of
swapping its block type with one from its list. The choice of
which block type to swap to is determined using the original
probability table from the structure’s construction. Examples
of structures with swapped blocks can be seen in Figures 3.a
(central ground structure), 3.c (central ground structure) and
3.d (leftmost ground structure).

B. Terrain Variation

Another minor update to increase level variety is through
the use of varying terrain height and angles. Whilst platform
structures can be suspended in the air at varying locations,
ground structures were previously always placed at the same
height. Instead, we now allow ground structures to have terrain
placed below them, resulting in an increased range of vertical
positions. For each ground structure within a generated level
(starting with the leftmost structure and moving right) there is
a random chance (G) that the current height of the ground will
increase or decrease by some amount. This amount of variation
can be selected randomly but should have fairly small bounds
to prevent it from increasing or decreasing too much. The
height of the ground can never be lower than the base original
ground height. The jumps in height between different ground
structures are masked by using angled terrain, resulting in a
smoother look. Examples of levels with terrain variation can
be seen in Figures 3.a and 3.b.

C. TNT Placement

Whilst the original generator did not attempt to place TNT
throughout the level, the proposed generator does. TNT is a
small square shaped box that will explode when hit by another
object, damaging and pushing away other nearby objects.
Possible TNT locations are identified throughout the level,
using the same approach as for pig positions, and are then
ranked based on a combination of three factors.

The first factor (f1) is how many pigs and structural weak
points are within the TNT’s blast radius. TNT boxes that are
placed near to vulnerable targets will maximise the impact
of their explosions and typically provide the player with
alternative methods for solving the level. The potential damage
that a TNT box has is calculated simply as the number of pigs
(pd) and weak points (bd) within its blast radius. This value
is then multiplied by a set weighting (A).

f1 = A(pd + bd) (1)

The second factor (f2) is the overall dispersion of TNT
throughout the level. Levels with TNT spread throughout them
are typically preferable to levels with TNT grouped together,
as setting off one of the TNT boxes will likely cause the
others to explode as well. The dispersion value for a TNT
location (tl) is calculated as the product of the Euclidean
distances between itself and all the TNT locations which have
already been selected (ts). This value is then multiplied by a
set weighting (B).

f2 = B
∏
tx∈ts

tltx (2)

The final factor (f3) is occupancy estimation and is based
on a technique called occupancy-regulated extension [15]. If a
TNT location is lower than a platform and within a set distance
(D) of that platform’s edges then f3 is equal to a set weighting
(C) (otherwise f3 = 0). This is because one of the key features
within Angry Birds is the ability to cause TNT to explode with
falling blocks, rather than with birds alone. TNT that is placed
below or near other blocks which may potentially fall and hit
it provides the user with this alternative choice of action.

The sum of all three of these factors gives a score for each
TNT location. The location with the highest ranking is chosen
and a TNT box is placed at the specified position. Any previ-
ously valid TNT locations that would overlap the newly placed
TNT are removed. The remaining TNT locations are then re-
evaluated and the highest ranked position is again selected.
This process continues until either a maximum number of TNT
boxes (Tm) is reached, there are no more valid TNT locations,
or the score for the highest ranked location falls below some
value (Sm). Examples of levels that contain TNT can be seen
in Figures 3.b, 3.c and 3.d.

D. Global Stability Analysis

Another one of the major weaknesses with the original level
generator was that it did not feature a reliable method for
testing the global stability of the structures created. Although
local stability requirements are enforced when adding blocks,
the global stability of a structure must be determined after
its construction. Whilst it is possible to guarantee that the
structures generated would be stable by implementing stricter
stability requirements when adding rows of blocks, this re-
duces the overall variety of content that can be produced.
Qualitative stability methods, such as those described in [16],
would provide a quick way of estimating stability, but they lack
the robustness required for larger and more complex structures.

Instead, as all the relevant physics parameters (mass, den-
sity, friction and location) of objects are known beforehand, we
can use the quantitative method described in [17] to calculate
the global stability of the structures within our generated
levels. Using this quantitative method is still not 100% accu-
rate, as the Unity Engine upon which the Angry Birds clone
is based suffers from simulation inaccuracies. However, we
found that assuming zero friction for our quantitative stability
calculations produced no false positives (i.e., all structures
classified as stable by our quantitative analysis were also stable
within the Unity Engine). Effectively, after each structure
has been generated it is tested for global stability using this
quantitative method. If the structure is deemed unstable then
it is abandoned and a new structure is generated instead.

E. Material and Bird Type Selection

The original level generator did not address the use of mul-
tiple bird types and selected the material of blocks randomly.
Both of these are limitations that heavily reduce the variety
and enjoyment of the levels created. These two points are also
highly interconnected, as many of the bird types in Angry
Birds react differently to specific block materials.

There are three different materials that are available in
Angry Birds; wood, ice and stone. These materials form a
natural hierarchy within themselves, with stone being the
heaviest and strongest material, and ice being the weakest
and lightest material. The material for each block within
a generated level is selected using one of several systems,
described below. The trajectory analysis system is carried
out first, after which each structure in the level is randomly
allocated one of the remaining systems. Blocks that have
already been set as stone due to them being weak points are
exempt from this material selection process.
• Trajectory analysis: Two possible trajectories (low and

high) are identified to each pig and TNT within the level.
Each of these trajectories then has a random chance (pt)
of being selected. For each trajectory selected, set all
blocks that intersect this trajectory to the same material
(specifically either wood or ice) unless already set prior.
Trajectories to pigs have higher preference than those to
TNT and the highest ranked locations are done first. This
results in interesting material paths for specific birds to
follow in order to reach important or useful objects.

• Clustering: Pick a random block and set it to a random
material. Find the next closest block that hasn’t already
had its material selected and set this block to the same
material. Each time a block’s material is set (including
the very first block) there is a random chance (pc) that
the material will change. If this happens then the next
selected block is used from now on when determining
the next closest block. This continues until all blocks in
the structure have had their material set. This results in a
cluster like pattern of materials throughout the structure,
as each block has a high likelihood of being the same
material as the blocks around it.

• Row grouping: For each row within the structure, set all
blocks to a random material

• Structure grouping: Set all the blocks within the structure
to a random material. This material selection system only
occurs in structures that have fewer than n blocks.

• Random selection: Set each block within the structure to
a random material (original method).

There are also five different bird types that are available; red,
blue, yellow, black and white. The special abilities of each of
these birds are described below, along with the materials that
they are strongest/weakest against.
• Red bird: No special ability, neither strong nor weak

against any specific material.
• Blue bird: Splits into three birds when tapped, strong

against ice blocks, weak against stone blocks.
• Yellow bird: Shoots forward in a straight line with

increased speed when tapped, strong against wood blocks,
weak against ice blocks.

• Black bird: Explodes either when tapped or after hitting
an object, strong against stone blocks.

• White bird: Drops an egg directly downwards when
tapped, this egg explodes after hitting another object.

For each generated level, we calculate the following scores:

• Red score = # reachable pigs / # pigs
• Blue score = # ice blocks / # blocks
• Yellow score = # wood blocks / # blocks
• Black score = # stone blocks / # blocks
• White score = # protected pigs / # pigs

(A pig is reachable if there is a trajectory to it that does not
pass through any other objects, and a pig is protected if all
trajectories to it pass through platforms/terrain.)

Each of these scores are then normalised so that they all
sum to one, giving the desired ratio of bird types for that level.
Bird types are then selected one at a time, always attempting
to keep the ratio of selected bird types as close as possible to
that of the desired ratio, until the desired number of birds is
reached. If the ratio error is equal for multiple choices, then
the bird type that is least present in the current selection is
chosen. If this is also equal then the bird type is selected at
random from these choices. This process can therefore be used
to determine not only the types of birds that are available to
the player but also their ordering.

F. Bird Number Selection

A critical, possibly even game-breaking, issue with the
original generator was that it had no way of establishing
whether a level it had created was solvable. The number of
birds provided to the player was calculated using a very simple
formula and was based only on the number of structures
and birds within the level. Not only is this estimation of
the number of birds required to solve a level exceptionally
primitive, it cannot guarantee that the level is even solvable, let
alone provide an effective measure of difficulty. Many of the
levels generated were either far too easy or extremely difficult,
perhaps even impossible to solve. To improve upon this, we
propose the use of AI agents to both verify that a level is
solvable and to select the number of birds that would provide
a suitable level of difficulty for the player.

The Angry Birds AI Competition [18] was initiated in
2012, and for the past five years participants from all over
the world have been submitting agents to take part in this
competition. These agents are designed to solve Angry Birds
levels using the fewest number of birds possible. The most
recent competition was in 2016, where eight different agents
competed. Once a level has been fully generated we let each
of these eight agents play the level using a very large number
of birds (e.g. 20). The exact number of birds used doesn’t
matter, just so long as there are enough that the agent could
be reasonably expected to solve the level in this many shots.
The type and order of each of these birds is determined using
the method described in the previous section. The number of
shots taken by each agent is then recorded and the fewest
number of birds that was required by any agent is the number
that is given to the player. If none of the agents can solve the
level using all the birds provided, then that level is abandoned
and a new level is generated instead.

Using these agents to evaluate our generated levels allows
us to gain a more accurate estimation of a suitable number of
birds for solving it, as well as confirming that the levels are
indeed feasible with the birds provided. This, combined with

(a) (b)

(c) (d)

Fig. 3: Four example generated levels using our new improved algorithm.

the other advancements described, mean that not only can our
new level generator create a more varied and enjoyable set of
levels, but that these levels are also be guaranteed to be both
stable and solvable.

V. FITNESS FUNCTION

One of the original papers [13] also proposed a fitness
function that could be used to tailor the content generated over
time. This was achieved by updating the values in a probability
table used for selecting block types during the structure
construction process. Whilst this method is an effective way
of generating highly specific content, the fitness function used
was fairly basic. This original function took into account
the number of possible pig locations within the structure,
the number of blocks within the structure, the aspect ratio
of the structure, and the dispersion of possible pig locations
within the structure. The problem with this is that while these
factors allow for the user to heavily tailor the type of structure
generated, all these values are either highly subjective or
dependent on the size boundaries for the structure. Structures
that are larger will typically have more blocks and more viable
locations for pigs, as well as a lower average distribution.
While the concept of ranking structures based on aspect ratio
may allow for more user liberties, it does not typically result
in more interesting structures.

We therefore propose a new fitness function that evaluates
each structure on more objective factors, increasing the overall
quality of the levels created without severely reducing the
variety of generated content. This new fitness function takes
into account three distinct factors, pig placement potential,
block type variety and structure robustness, with a lower fitness
value indicating a more desirable level.

A. Pig Placement Potential

This component of the fitness function is a merger of two
of the previous fitness function factors, specifically the factors
regarding the number and dispersion of possible pig locations.
Instead of simply rewarding structures that have a lot of
possible places to put pigs, we will now reward structures that
have a large number of well dispersed possible pig locations.
|p| is defined as the total number of possible pig locations
in the structure and d defines the dispersion value calculated
using the same dispersion measurement technique proposed in
[13]. To give a quick summary, this dispersion method divides
the width and height of the structure by the square root of the
number of possible pig locations, and then places a rectangle
with this new width and height at every possible pig location.
The total area that these rectangles cover gives an indication of
how well dispersed these locations are (less dispersion means
more overlapping rectangles and so less area is covered). The
total area covered is then normalised by dividing it by the area
of the structure’s bounding box, to giving the value of d. The
set factor X is used to adjust how much of an impact this
component has on the structure’s overall fitness value. This
section of the fitness function is described by equation (3):

X
1− d

1 + |p| (3)

B. Block Type Variety

One of the new components that we have added to our
fitness function is the variety of blocks within the structure
relative to the number of rows it contains. Instead of simply
rewarding structures with more blocks (as the original method
tended to do) which would highly favour smaller block types,
we instead favour structures that are constructed using a wide
variety of different block types. v is defined as the number

of different block types in the structure and n is defined as
the number of rows within the structure. The set factor Y is
used to adjust how much of an impact this component has on
the structure’s overall fitness value. This section of the fitness
function is described by equation (4):

Y
n

n+ v
(4)

C. Structure Robustness
The other new component that we have added to our

fitness function is the overall robustness of the structure
against rotation. Although we will only accept a structure if
our quantitative stability analysis method deems it globally
stable, this does not tell us anything about how stable or
robust the structure really is. In order to estimate this, we
favour structures that will remain stable even when rotated.
The structure being evaluated is rotated both clockwise and
anticlockwise with angle intervals of five degrees, until the
structure hits 45-degree rotation in each direction or becomes
unstable. This gives a total of 18 possible angles at which the
structure could be stable. r is defined as the number of these
angles at which the structure was deemed stable. The set factor
Z is used to adjust how much of an impact this component
has on the structure’s overall fitness value. This section of the
fitness function is described by equation (5):

Z(1− r

18
) (5)

D. Complete Fitness Function
The sum of all these separate components for pig placement

potential, block type variety and structure robustness makes up
the complete fitness function, described by equation (6):

F = X
1− d

1 + |p| + Y
n

n+ v
+ Z(1− r

18
) (6)

VI. EXPERIMENTS AND RESULTS

Several experiments were carried out to test different com-
ponents of the structure generator and fitness function.

A. Probability Table Optimisation
As previously mentioned, a probability table for block

type selection can be optimised over many generations using
our specified fitness function. The training algorithm used
for updating this fitness function is the same as described
in [13]. To summarise, for each training generation nine
separate structures are created. These nine structures are then
ranked using the fitness function previously described. The
frequency of block types in each structure is then used to
update the corresponding sections of the probability table,
with the highest ranked structures having the greatest impact
and the lowest ranked structures having the least impact. The
probability table values are then renormalised so that they
again sum to one. Please see the original paper for full details
on the probability table optimisation algorithm.

For our experiment, we initialised the probability table with
equal values for all block types (1/13) and then repeatedly
generated structures of random sizes (width limits between
3.0 and 10.0). For our fitness function, we defined: X = 1.0,

Fig. 4: Probability table values for each block type over
multiple generations.

Y = 0.5, Z = 0.5. This gives roughly equal weighting to the
pig placement potential and block type variety components
of the fitness function, with a slightly higher emphasis on
the structure robustness component. The probability table
was then updated over 300 generations of training (total of
2700 structures) with the current state of the probability table
recorded after each generation. The result of this experiment is
illustrated in Figure 4 (block types with an r-subscript indicate
blocks that have been rotated ninety degrees).

From this graph, we can see that over time the probability
values for block types 1, 2, 6, 7 and 8 tended to increase
(although the probability for block type 1 appeared to be
decreasing towards the end), whilst the values for block types
2r, 3, 4, 5, 5r, 6r, 7r and 8r all decreased. This indicates that our
function tends to favour wider blocks, as they provide a larger
and more disperse set of possible pig locations, and also likely
increase the overall robustness of the structure. The block
type variety component of the fitness function keeps structures
that contain only these desirable blocks from becoming too
dominant, as we can see that the probability values tended to
fluctuate over time.

Whilst this training process could carry on indefinitely, this
would likely result in very small probability values for a
significant number of block types. We therefore decided to
cease training once the probability of selection for any block
type dropped below 2.0%. In our case, this occurred for block
type 7r after 131 generations. This optimised probability table
was then used when analysing the expressivity of our new
level generator.

B. Generator Runtime
The majority of our procedural level generation algorithm

was coded using Python 3.4. The only exceptions being our
quantitative stability analysis program, coded in C++, and our
collection of Agents from the 2016 AIBirds competition, each
of which was coded in Java. This software was all run on an
Ubuntu 14.04 desktop PC with an i7-4790 CPU and 16GB
RAM. For our experiments we generated 200 levels using
our optimised probability table, each containing between two
and four ground structures, between one and three platform
structures, and between 6 and 10 pigs (all values selected
randomly for each new level generated). For block swapping
we defined S = 0.5. For terrain variation we defined G = 0.5.

Fig. 5: Average frequency for each block type.

For TNT placement we defined A = 1.0, B = 0.005, C = 2.0,
D = 0.8, Tm = 5 and Sm = 6.0. For material selection we
defined pt = 0.3, pc = 0.2 and n = 10. All other generator
variables were defined the same as those used in [14]. With the
exception of the Angry Birds agents which will be discussed
later, the average combined runtime of all other level generator
components was 54.1 seconds. Additionally, our quantitative
stability analysis program found a structure stable 68.2% of
the time and produced no false positives.

C. Expressivity Analysis

The expressivity of a level generator is the space of all levels
it can generate and is measured by evaluating various aspects
of a level to identify its strengths and weaknesses. Several met-
rics have been proposed to analyse a generator’s expressivity
[19], [20]: frequency, linearity, density and leniency.

1) Frequency: Frequency evaluates the number of times
that a block type occurs within a level. Figure 5 shows
the average frequency of each block type within a level.
Unsurprisingly, we can see that smaller block types such as
4, 5 and 5r have a much higher average frequency than larger
block types. This is despite the fact that all three of these
block types had their probability of selection reduced from
their original values in the optimised probability table. This
would suggest that the frequency of these block types would
be even higher had we not optimised the probability table. The
wider thinner block types favoured by our fitness function also
appear much more frequently than their rotated counterparts.
However, the difference is not as large as one would expect
based purely on our optimised probability values. For example,
the probability of selecting block type 8 is nearly five times
as large as selecting block type 8r, yet its frequency is not
even double that of 8r. This is likely due to the fact that wider
block types are more likely to fulfil the necessary support
requirements with a fewer number of blocks. Thinner block
types require more blocks to satisfy these conditions and so are
placed more frequently. However, overall, we can see that no
block type has a restrictively small frequency value, meaning
that the variety of structures created by our generator has not
been severely reduced by the use of our fitness function to
optimise the probability table.

2) Linearity: Linearity measures the “profile” of generated
levels. Levels with objects placed at multiple heights through-

out the level space will have a low linearity, while levels where
the objects follow a straight line will have a high linearity.
Linearity is measured by performing a linear regression, taking
the centre points of all blocks, platforms, pigs and TNT boxes
as our data points. Each level is then scored based on its R2

value. The average linearity of a generated level is 0.0581,
with a standard deviation of 0.0652. This result shows that
our levels are highly non-linear, with objects being distributed
throughout the entire level space.

3) Density: The density of a level represents the compact-
ness of the objects placed within it. Density is measured by
calculating the total area of all blocks, platforms, pigs and
TNT boxes within the level space. This is then divided by the
total size of the level space to give a value indicating how
much of the level’s area was taken up by these objects. The
average density of a generated level is 28.7%, with a standard
deviation of 5.23%. We believe this density percentage is
suitable, as levels with a low density are likely to be sparse
and uninteresting, whilst levels with a high density are likely
to be too congested.

4) Leniency: Leniency is used to express how difficult a
level is to successfully complete (i.e., kill all pigs with the
birds provided). The difficulty of an Angry Birds level is
therefore almost solely dependent on the number of birds
provided to the player. This is in turn heavily dependent on
the skill of the Angry Birds agents used to decide this number.

We therefore propose a new measure of leniency for games
where agents are employed to verify that the levels created are
solvable. We utilise a Naive agent that makes each of its shots
at a randomly selected pig as the base method for determining
the number of birds required to solve a level. Each of the other
Agents is then compared against this. An agent that performs
much better than the naive approach would indicate that not
only is this agent very skilled, but that it is better at selecting
the minimum number of birds required to solve a level. The
difference between the best performing agent and this Naive
agent is therefore a suitable measure of Leniency.

Eight agents from the 2016 AIBirds competition (including
the Naive agent) were used to play the generated levels. Each
of these agents has a different strategy for solving Angry
Birds levels, with some using heuristic approaches, logic
programming, or even simulations, in an attempt to solve them.
All these agents were given three attempts to solve each level,
and the number of birds that it took was recorded. The average
number of birds (µB) required by each agent, as well as the
standard deviation (σ) and runtime (seconds), to solve each of
the levels is provided in Table I.

From this we can see that the Datalab agent performed the
best, with an average of 3.40 birds used for each level. The
Naive agent took 4.79 birds on average, giving us a leniency
measure of -1.39 for the levels generated. This measure
could be reduced even further (increased level difficulty) by
developing either agents that can solve levels better, or levels
that are harder for the Naive agent to solve. We can also see
that the combined runtime for testing a level using all these
agents is very high. It would therefore make more practical
sense to only use a smaller subset of very good agents to

TABLE I:
AVERAGE NUMBER OF SHOTS REQUIRED BY EACH AGENT

Agent Shots (µW |σ) Runtime (seconds)
HeartyTian 4.35 | 2.32 93.5
AngryHex 6.32 | 3.28 151.4
Datalab 3.40 | 1.42 78.5
SEABirds 3.85 | 2.11 125.1
S-Birds 4.04 | 1.89 213.0
Naive 4.79 | 2.54 132.7
IHSEV 7.20 | 2.98 250.6
BamBirds 4.67 | 1.77 124.2

determine the bird number for a level. This means that by just
using the Datalab agent we are able to generate a stable and
solvable level on average every 132.6 seconds.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a procedural level generation
algorithm for Angry Birds style physics games, which can
guarantee that the levels it creates are both stable and solvable.
This generator builds upon a previously proposed algorithm
to substantially increase the variety and validity of the levels
created. Improvements not only to structures and terrain within
these levels, but also to their evaluation and optimisation,
produces levels greatly superior to those previously generated.
We have also utilised Angry Birds agents to ensure that
the levels created are solvable, arguably the most important
requirement for level generation algorithms.

Each of the structures we generate is evaluated using a high-
level fitness function, which considers pig placement potential,
block type variety and structural robustness. This function can
then be used to evolve the probability of selecting certain block
types over multiple generations, resulting in a more fine-tuned
and enjoyable set of levels. Each section of this fitness function
can also be weighted independently, allowing the user to define
which aspects of the generated levels are most important.

Our proposed level generator was evaluated in terms of its
expressivity using a wide assortment of metrics: frequency,
linearity, density, and leniency. These metrics were calculated
using not only the type of objects within each level, but
also their position and quantity. The results of this analysis
demonstrated that our structure generator can create a broad
range of levels with many desirable attributes.

There is an extensive range of future possibilities for this re-
search. One example could be to develop a structure generation
method that can create structures that are no longer segmented
into distinct rows, or perhaps angled structures for sloping
terrain. Another obvious improvement would be not to the
level generator itself, but rather to the AI agents. The difficulty
of procedurally generated content is particularly troublesome
to measure, especially with games such as this which contain a
near continuous state and action space. Improving the skill of
these AI agents may also help improve the interest or quality
of the levels we create, as it could be that levels which can only
be completed by more advanced agents require a certain degree
of skill or ingenuity to solve. Agents could also be used to alter
the content of generated levels more than just the number of

birds, perhaps by testing out different combinations of fitness
values during training, or removing certain TNT boxes or bird
types that were not used effectively. Performing a user study
that compares these levels against those of the original Angry
Birds would also give a good indication of the overall quality
of the levels generated, as well as how the performance of our
suggested agents compares to that of typical players.

REFERENCES

[1] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, pp. 1–22, 2013.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[3] S. Dahlskog and J. Togelius, “Patterns and procedural content genera-
tion: Revisiting mario in world 1 level 1,” in Proceedings of the First
Workshop on Design Patterns in Games. ACM, 2012, pp. 1:1–1:8.

[4] G. N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3,
pp. 147–161, 2011.

[5] N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for
cut the rope through a simulation-based approach,” in Proceedings of the
Ninth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2013, pp. 72–78.

[6] ——, “Ropossum: An authoring tool for designing, optimizing and
solving cut the rope levels,” in AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2013, pp. 215–216.

[7] M. Shaker, N. Shaker, J. Togelius, and M. Abou-Zleikha, “A progressive
approach to content generation,” in 18th European Conference on the
Applications of Evolutionary Computation, EvoApplications 2015, 2015,
pp. 381–393.

[8] L. Ferreira and C. Toledo, “A search-based approach for generating
angry birds levels,” in Computational Intelligence and Games (CIG),
2014 IEEE Conference on, 2014, pp. 1–8.

[9] ——, “Generating levels for physics-based puzzle games with estimation
of distribution algorithms,” in Proceedings of the 11th Conference on
Advances in Computer Entertainment Technology. ACM, 2014, pp.
25:1–25:6.

[10] M. Kaidan, T. Harada, C. Y. Chu, and R. Thawonmas, “Procedural
generation of angry birds levels with adjustable difficulty,” in 2016 IEEE
Congress on Evolutionary Computation (CEC), 2016, pp. 1311–1316.

[11] L. T. Pereira, C. Toledo, L. N. Ferreira, and L. H. S. Lelis, “Learning
to speed up evolutionary content generation in physics-based puzzle
games,” in 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence (ICTAI), 2016, pp. 901–907.

[12] M. Shaker, M. H. Sarhan, O. A. Naameh, N. Shaker, and J. Togelius,
“Automatic generation and analysis of physics-based puzzle games,” in
Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
2013, pp. 1–8.

[13] M. Stephenson and J. Renz, “Procedural generation of complex stable
structures for angry birds levels,” in 2016 IEEE Conference on Compu-
tational Intelligence and Games (CIG), 2016, pp. 1–8.

[14] ——, “Procedural generation of levels for angry birds style physics
games,” in Twelfth AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE-16), 2016, pp. 225–231.

[15] P. Mawhorter and M. Mateas, “Procedural level generation using
occupancy-regulated extension,” in Proceedings of the IEEE Conference
on Computational Intelligence in Games (CIG), 2010, pp. 351–358.

[16] Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3D-based reasoning with
blocks, support, and stability,” in 2013 IEEE Conference on Computer
Vision and Pattern Recognition, 2013, pp. 1–8.

[17] A. G. M. Blum and B. Neumann, “A stability test for configurations of
blocks,” Massachusetts Institute of Technology, Tech. Rep., 1970.

[18] J. Renz, “AIBIRDS: The angry birds artificial intelligence competition,”
in Proceedings of the 29th AAAI Conference, 2015, pp. 4326–4327.

[19] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. ACM, 2010, pp. 4:1–4:7.

[20] B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. Togelius, “A
comparative evaluation of procedural level generators in the mario AI
framework,” in Foundations of Digital Games 2014, 2014, pp. 1–8.

