

COSC460
Novel Methods for Reflective Symmetry Detection in Scanned 3D Models

October 16, 2015

Matthew Stephenson

mjs357@uclive.ac.nz

Supervisor: Richard Green

richard.green@canterbury.ac.nz

Co-Supervisor: Adrian Clark

adrian.clark@canterbury.ac.nz

Abstract

The concept of detecting symmetry within 3D models has received an extensive amount of

research within the past decade. Numerous algorithms have been proposed to identify reflective

symmetry within 3D meshes and to extract a quantitative measure for the model’s level of

symmetry. Much of this existing work focuses on identifying symmetry in noiseless 3D models

with most methods unable to work effectively on models distorted by noise, such as those

commonly obtained when scanning objects in the real world. This report details the design and

implementation of two robust and fast algorithms, which can be used on a wide variety of models

to identify global approximate reflective symmetry. These proposed methods are also able to

identify likely planes of symmetry in models that have been distorted with noise or contain minor

imperfections, making them ideal for scanned models of real world objects. The hypothesis planes

are determined by principal component analysis, after which the proposed algorithms give each

plane a numerical value corresponding to its likelihood of being a plane of global approximate

reflective symmetry. The first algorithm uses the Hausdorff distance between vertices to

estimate symmetry, whilst the second uses an approach based on ray casting. We estimate the

accuracy of our proposed methods to be 96.88% for the Hausdorff distance method and 93.75% for

the ray casting method.

Acknowledgements

I would like to thank Richard Green and Adrian Clark for all their supervision and assistance on

this project, as well as providing feedback on my reports and presentation. In addition I would

like to thank Andy Cockburn for offering additional insight on report writing style and to him

and Tanja Mitrovic for examining this report. Lastly I would like to thank all my friends, family

and lecturers for their emotional assistance throughout the year.

CONTENTS

1. Introduction ... 5

1.1. Report outline .. 5

2. Background and Related work ... 6

2.1. Key concepts within symmetry .. 6

2.1.1. Basic types of symmetry .. 6

Reflectional symmetry ... 6

Rotational symmetry ... 6

Translational symmetry .. 6

2.1.2. Complex types of symmetry ... 7

Global symmetry .. 7

Partial symmetry ... 7

Approximate symmetry ... 7

2.2. Early work within symmetry detection ... 8

2.2.1. 2D symmetry detection .. 8

2.2.2. Primitive 3D symmetry detection ... 8

2.3. Advanced methods for 3D symmetry detection ... 8

2.3.1. Global symmetry detection .. 8

Identifying automorphisms in planar triply connected graphs 8

Using octree representation to identify symmetry .. 9

Extended Gaussian image of model ... 9

Spherical harmonic coefficients of generalised moments 10

2.3.2. Partial symmetry detection ... 10

Gaussian Euclidean distance transform .. 10

Stochastic clustering to find pairs of vertex groups .. 10

Using 2D depth images ... 11

2.3.3. Additional detection methods .. 11

Detecting 3D symmetry from 2D image ... 11

Curved reflective symmetry detection ... 11

Symmetries of non-rigid shapes ... 11

2.4. Summary .. 12

3. Design and Implementation ... 14

3.1. Identifying hypothesis planes ... 14

3.1.1. Centre of mass approximation ... 14

3.1.2. Principle component analysis .. 15

3.1.3. Hypothesis symmetry planes ... 16

3.2. Hausdorff distance approach .. 17

3.2.1. Mesh split and reflection .. 17

3.2.2. Hausdorff distance symmetry measure .. 17

3.2.3. Potential limitations ... 18

Contents 4

3.3. Ray casting approach .. 19

3.3.1. Orientate plane and mesh ... 19

3.3.2. Ray casting and intersection ... 19

3.3.3. Ray casting symmetry measure .. 20

3.4. Symmetry measure normalisation ... 22

3.4.1. Bounding box .. 22

3.4.2. Signed volume of a tetrahedron ... 22

3.5. Additional variations .. 23

3.5.1. Polygon reduction ... 23

3.5.2. Laplacian smoothing .. 24

3.5.3. RANSAC .. 26

3.5.4. 𝑘-d tree .. 27

3.5.5. Non-uniform casting ... 28

3.6. Summary .. 29

4. Results ... 31

4.1. Experimental design ... 31

4.2. Overall accuracy .. 31

4.3. Overall runtime ... 35

4.4. Additional variations .. 37

4.4.1. Polygon reduction .. 37

4.4.2. Laplacian smoothing .. 39

4.4.3. RANSAC .. 40

4.4.4. 𝑘-d tree .. 40

4.4.5. Non-uniform casting ... 42

4.4.6. Additional variations discussion ... 43

4.5. Threshold determination .. 43

5. Discussion .. 45

5.1. Principal component analysis limitations ... 45

5.2. Hausdorff distance method limitations ... 46

5.3. Ray casting method limitations .. 47

5.4. Choice of method ... 48

5.5. Multiple symmetry planes .. 48

5.6. Applications ... 49

5.6.1. Model remeshing ... 49

5.6.2. Shape classification ... 50

5.6.3. Model compression .. 50

6. Conclusion and Future work .. 51

Bibliography ... 52

Appendix .. 55

Introduction 5

1 Introduction

Symmetry is a mathematical concept that exists in many man-made objects, as well as being

widely prevalent in nature (Liu 2010). These objects can be represented digitally as 3D geometric

models, which are typically encoded as a mesh created from small polygons, usually triangles,

with little to no information about their higher level structure. Determining additional properties

of a model, including its global reflective symmetry, is an important task within computer

graphics and computer vision. Many existing applications benefit greatly from the ability to

identify and extract symmetry, such as 3D model retrieval, geometric problem solving, object

recognition, robotic assembly, procedural modelling, segmentation and remeshing.

Many of the current methods for identifying global reflective symmetry planes suffer from a

range of problems. These include the inability to detect approximate symmetry within complex

geometry and restrictions on the model’s structure, such as being convex or fully connected.

The aim of this research is to develop simple, accurate and fast algorithms that can be used to

detect likely planes of global approximate reflective symmetry within scanned models of 3D

objects, which are often distorted by noise. By first identifying potential planes of symmetry

within the model, the algorithms calculate a measure for how likely each hypothesis plane is to

be a plane of reflective symmetry. This value is then compared against a threshold to determine

whether it is large enough for the given model.

Likely planes of reflective symmetry are determined using principal component analysis (PCA)

and two proposed methods for measuring the planes likelihood of symmetry have been developed.

The first method utilises the Hausdorff distance between vertices on either side of the hypothesis

plane. The second method utilises ray casting to determine the deviation between mesh

intersection points on either side of the hypothesis plane. Several variations to each method

which improve their accuracy and runtime are also investigated.

1.1 Report outline

This report begins with an explanation about some of the key concepts within symmetry, followed

by an overview of relevant prior work, including research done on both global and partial

symmetry detection. Section 3 details the mathematical design and implementation of our

proposed methods. Section 4 demonstrates how we have evaluated our proposed algorithms and

presents the final results. Section 5 contains a discussion of these results and a comparison of the

proposed algorithm’s strengths and weaknesses, as well as a brief look into some of the

applications that 3D symmetry detection has. Section 6 presents our final conclusion and outlines

possible future work which could be conducted to improve our methods.

Background and Related Work 6

2 Background and Related Work

2.1 Key concepts within symmetry

There are many different categories of symmetry that any 2D image or 3D model may possess.

These can be divided into basic types of symmetry (symmetry that most people are familiar with)

and complex types of symmetry (symmetry that is less commonly known).

2.1.1 Basic types of symmetry

Reflectional symmetry
Reflectional symmetry, mirror symmetry or bilateral symmetry represents symmetry due to

reflection (see Figures 2.1 and 2.3). In 3D objects there is a plane about which reflection takes

place and for 2D images this is a vector. A plane of symmetry for a 3D object is any plane such

that if the object was reflected about this there would be no visible change. A plane of reflective

symmetry will always go through the centre of the object. This is the type of symmetry that our

method is attempting to detect.

Rotational symmetry
Rotational symmetry or radial symmetry represents symmetry due to rotation (see Figures 2.2

and 2.3). In 3D objects there is a vector around which rotation takes place and for 2D images

there is a point. A 3D object is said to have a vector of rotational symmetry if it can be rotated a

certain amount around this vector and still look the same. The objective of rotational symmetry

algorithms is to determine the direction and amount of rotational symmetry the object possesses.

Translational symmetry
Translational symmetry represents symmetry due to translation. In 3D objects the translation is

 Figure 2.1: Shape with Figure 2.2: Shape with Figure 2.3: Shape with

 reflective symmetry rotational symmetry reflective and rotational symmetry

Background and Related Work 7

given as a vector in three dimensions (x, y, z) and for 2D images this is given in two dimensions

(x, y). A 3D object is said to have translational symmetry if it is comprised of identical elements

that can be separated using planes.

2.1.2 Complex types of symmetry

Global symmetry
An object that contains some form of symmetry throughout the entire model is said to contain

global symmetry (see Figure 2.4). This is in contrast to the idea of an object having partial

symmetry.

Partial symmetry
An object that does not contain some form of symmetry throughout the entire model may still

possess partial symmetry. This occurs when some part of the model possesses a form of

symmetry but another part of it does not. For example, this occurs in Figure 2.5 where the

horse’s legs are in different positions on either side of its body. The rest of the model apart from

the legs is symmetrical so the model is said to have partial symmetry.

Approximate symmetry
For digital models created by a human it is easy to say whether an object has symmetry or not.

However, it is extremely unlikely for a scanned real world object to contain perfect symmetry of

the types discussed so far. It is more likely that an object would have approximate symmetry,

where the symmetry is not mathematically exact but is close enough that we could identify it as

such. A good example of this would be a person’s head. For most people the two halves of their

head are not identical but are close enough that we would state that there was approximate

symmetry. For methods which attempt to detect approximate symmetry, this is usually achieved

by calculating a numerical value representing the deviation between the actual and ideal

symmetry of the model. If this value is small enough then the model is said to have approximate

symmetry, although the threshold used for this decision can vary significantly.

 Figure 2.4: Model that contains Figure 2.5: Model that contains

 global reflective symmetry partial reflective symmetry

Background and Related Work 8

2.2 Early work within symmetry detection

2.2.1 2D symmetry detection

Early symmetry detection algorithms were only concerned with identifying exact symmetries

within 2D images represented as a set of planar points. The most common way of achieving this

is by reducing the 2D symmetry problem to a 1D pattern matching problem which works in O(n

log n) time (Atallah 1985). This approach can be adapted and improved further, with two notable

extensions being the ability to detect partial symmetry within a 2D image (S. Parry-Barwick

1993) and the ability to detect approximate symmetry by utilising a hierarchy that defines

symmetry as a continuous feature (Zabrodsky, Peleg et al. 1995). However, both of these

additions are very computationally expensive and rely on the algorithm’s ability to establish

correspondence between points within the image.

2.2.2 Primitive 3D symmetry detection

The original idea of reducing 2D symmetry detection to a 1D pattern matching problem can be

expanded to detect symmetry in 3D point sets (Wolter, Woo et al. 1985) as well as the ability to

detect approximate symmetries using similar principles (Alt, Mehlhorn et al. 1988).

2.3 Advanced methods for 3D symmetry detection

After this initial research had constructed the basis for more advanced 3D model symmetry

detection algorithms, many improvements and variations were proposed in subsequent years. A

comparison of these previous methods is presented at the end of this section (see Table 2.1).

2.3.1 Global symmetry detection

Identifying automorphisms of planar triply connected graphs
One of the earliest methods for detecting rotational symmetry in 3D models creates a graph-

based representation of the solid object (Jiang and Bunke 1991). Hypothetical symmetry axes are

then extracted, by finding automorphisms of the graph and a rotation matrix. This method can

determine global and approximate symmetry for rotation. This method has many downsides

however, as it is highly dependent on the topology of the model, requiring the mesh to be fully

connected in order to generate the corresponding graph. It is also very susceptible to noise or

other small imperfections within the object’s geometry. The algorithm used has quadratic

complexity and requires O(m2) time, where m represents the number of edges in the object. This

means that whilst this method is simple to implement, it suffers from many geometry

restrictions and computational inefficiency.

Background and Related Work 9

Using Octree representation to identify symmetry
This method creates an octree representation of the model which is then traced to identify likely

planes of symmetry (Minovic, Ishikawa et al. 1993). This was one of the first papers to propose

the use of the principle axis transform to help orientate the object before attempting to detect

symmetry. This allows the input object to be in an arbitrary position and rotation. Many

subsequent algorithms used this or similar methods to first orientate the object before identifying

potential symmetry planes. This method can determine global and approximate symmetry for

rotation and reflection. However, this method does become more computationally complex for

larger models and has been shown to be sensitive to noise.

Extended Gaussian image of model
Another approach to identifying symmetry in 3D models centres around the use of the extended

Gaussian image of a model (Changming and Sherrah 1997). This method works by creating a

tessellated sphere of hexagons around the object, with the same centre of mass as the mesh. The

algorithm then iterates though each face of the mesh and assigns it to the hexagon which

intersects with the face’s normal vector, creating an orientation histogram for the model (see

Figure 2.6). The number of hexagons used to create the tessellated sphere can be altered based

on the desired level of accuracy. This method can determine global and approximate symmetry

for rotation and reflection. The main problem with this method is how it responds to small

imperfections in the model. While these typically only cause minor changes to the positions of the

model’s faces, they can have a major influence on the normal of the faces. This would make this

method very impractical for use on scanned 3D models, as these are frequently subject to noise

distortions.

 (a) (b)

Figure 2.6: Simple mesh model of a human head (a) and corresponding orientation histogram (b)

(Changming and Sherrah 1997)

Background and Related Work 10

Spherical harmonic coefficients of generalised moments
This method detects global symmetries of 3D models by analysing the extrema and spherical

harmonic coefficients of generalised moments (Martinet, Soler et al. 2006). This method utilises

the fact that the even order moments contain the same symmetries as the model. The generalised

moments are not computed directly; instead their spherical harmonic coefficients are computed

using an integral expression. After this, the extrema of these functions are used to identify

candidates for symmetries, which are then checked against the original shape using an

appropriate geometric measure. When compared to the previous algorithms, this method

computes a deterministically small number of surface integrals whilst still providing fairly

accurate results. This method can determine global and approximate symmetry for rotation and

reflection. Whilst this method can be shown to detect reflective symmetry within scanned 3D

models it was not specifically designed for this purpose. Because of this, the method is very

inaccurate when applied to scanned models containing large holes or other distortions (scans

must be have very high resolution and accuracy). It is also far more complex than most other

methods, making it difficult to integrate easily into other applications.

2.3.2 Partial symmetry detection

Gaussian Euclidean distance transform
By using the Gaussian Euclidean distance transform it is possible to determine a shape

descriptor similarity, detailing the distance between the shape descriptor of an object and its

perfectly symmetrical equivalent. This can be used to determine a measure of a model’s

symmetry with respect to every axis passing through the centre of mass (Kazhdan, Funkhouser

et al. 2004). This method can determine global and approximate symmetry for rotation and

reflection. This method can also be used to detect partial symmetry but relies on the algorithm’s

ability to find suitable pairs of vertices within the model (Podolak, Shilane et al. 2006). This

makes the method good for shape identification but very costly for accurate results, as the

algorithm has to compute the surface integration for each of the sampled directions.

Stochastic clustering to find pairs of vertex groups
By matching local shape signatures, followed by stochastic clustering in transformation space, it

is possible to extract potential symmetry planes from a 3D model (Mitra, Guibas et al. 2006). The

first part of this method works by computing simple descriptors at a set of chosen locations on the

shape. These local descriptors are then used to pair up groups of vertices to form clusters that

provide information about the symmetry relation between them. The second part of this method

extracts the significant modes of this mass distribution and uses this to check the spatial

consistency, verifying whether symmetry is present. This algorithm is similar in design to

another method which uses a variation of the Hough transform to extract features (Cailliere,

Denis et al. 2008). These methods can determine global, partial and approximate symmetry for

rotation and reflection. The main problem with these methods is that they rely on the ability of

the algorithm to identify suitable pairs of vertices within the model, which may not always be

possible.

Background and Related Work 11

Using 2D depth images

If a 3D model has been orientated, either manually or by using PCA (or a similar method), it is

possible to get a quick estimation of symmetry using 2D depth images. This method is much

faster than any of the previous approaches but suffers from being far less accurate. After taking a

2D depth image of each side of the orientated model, the image is analysed to determine if any

symmetry is likely to be present (using a 2D symmetry detection algorithm). Whilst a symmetry

detection method of this nature is not mathematically valid, it can provide a reasonably accurate

estimation of symmetry (Axenopoulos, Litos et al. 2011). These methods are typically only used

for real-time symmetry detection, as their accuracy is much less than what would normally be

desired.

2.3.3 Additional detection methods

This section describes several other symmetry detection algorithms that are designed for specific

situations or requirements.

Detecting 3D symmetry from 2D images
All of the methods mentioned so far rely on the model to be fully accessible and manipulable by

the algorithm. It is sometimes the case however, that symmetry must be estimated without the

objects full mesh being available. Instead, a single or collection of 2D images of the object is

provided, from which the symmetry of the original 3D object is estimated. This can be achieved

either from a sketch of the model (Zou and Lee 2005), a single 2D image of a volumetric shape

(Sawada and Pizlo 2008) or by using a view-based approach (Li, Johan et al. 2014). These

methods have demonstrated reasonable accuracy under the right circumstances and are mainly

used to detect global reflective symmetry in specialised situations.

Curved reflective symmetry detection
There are also some algorithms that attempt to detect, or correct, curved reflective symmetry

within 3D models. These methods are used when an object contains reflective symmetry about a

curved plane rather than a straight one. This symmetry is detected by identifying matching

sections of partial symmetry and then connecting all these planes together (Liu and Liu 2011).

The position of the objects vertices can then be adjusted so that their corresponding planes are

parallel, giving the effect of symmetrizing the model (see Figure 2.7). (Mitra, Guibas et al. 2007).

Symmetries of non-rigid shapes
By extending the concepts of intrinsic symmetry for a non-symmetric model, it is possible to

detect symmetry within a non-rigid shape (Raviv, Bronstein et al. 2010). Similar to the previous

method of curved symmetry detection, symmetry within a deformed model can be identified by

connecting many small planes of partial symmetry. From this the algorithm can then decide

whether the model may possess intrinsic or extrinsic symmetry (see Figure 2.8).

Background and Related Work 12

2.4 Summary

While there are many previous methods for symmetry detection they contain several limitations

which make them ineffective on scanned 3D models, including being topology dependent,

sensitive to noise and requiring vertex pairings. Our proposed algorithms are designed

specifically for these types of models, with the goal of providing a robust and fast means of

detecting global approximate reflective symmetry. The next chapter details the design and

implementation of our algorithms.

(a) (b)

Figure 2.7: Model that contains curved reflective symmetry (a)

which has then been symmetrized (b) (Mitra, Guibas et al. 2007)

(a) (b)

Figure 2.8: Model that contains extrinsic symmetry (a);

model that contains intrinsic symmetry (b) (Raviv, Bronstein et al. 2010)

Background and Related Work 13

Reference Reflection Rotation Global Approximate Partial Designed for

scanned models
(Alt, Mehlhorn et al.

1988)
(Axenopoulos, Litos et

al. 2011)
(Cailliere, Denis et al.

2008)
(Changming and

Sherrah 1997)
(Jiang and Bunke

1991)
(Kazhdan, Funkhouser

et al. 2004)
(Martinet, Soler et al.

2006)
(Minovic, Ishikawa et

al. 1993)
(Mitra, Guibas et al.

2006)
(Podolak, Shilane et al.

2006)
(Wolter, Woo et al.

1985)
Proposed method

Table 2.1: General comparison of features between the most common 3D symmetry detection methods and our proposed method

Design and Implementation 14

3 Design and Implementation

Our algorithms for global reflective symmetry detection both have two distinct processes. The

first process involves determining potential planes of reflective symmetry (hypothesis planes) by

using principal component analysis (PCA). The second process involves calculating a symmetry

measure for each of the hypothesis planes based on the level of reflective symmetry the model

has with respect to it. Our two algorithms differ in this second process. One uses the Hausdorff

distance and the other uses ray casting. A flowchart of the entire program is provided at the end

of this section (see Figure 3.14).

3.1 Identifying hypothesis planes

Using PCA to orientate a model before attempting symmetry detection is a technique that has

been implemented in many previous methods and has been shown to work effectively at

determining potential planes of reflective symmetry (Dimitrov 2012). For this reason it was

selected as the method by which to derive the hypothesis planes. In order to perform PCA on a

model it is necessary to first estimate the model’s centre of mass

3.1.1. Centre of mass approximation

There are two main methods for determining the centre of mass 𝑴 for a model constructed using

the set of vertices 𝑽.

The first method is to use the mean position of each vertex within the mesh.

𝑴 =
𝟏

|𝑽|
∑𝒗

𝒗∈𝑽

The second method is to use the centre of the mesh’s bounding box.

𝑴 =
𝒎𝒂𝒙
𝒗∈𝑽

𝑽 −𝒎𝒊𝒏
𝒗∈𝑽

𝑽

𝟐
+𝒎𝒊𝒏

𝒗∈𝑽
𝑽

Although both of these methods have limitations, they are each suited to different types of

models. The first method is more suited to models that may potentially contain noise or outliers.

The second method is more suited to models where the vertices are not spread evenly throughout

the mesh. In the case of scanned 3D models it is more often the case that the data is noisy or

contains outliers, meaning that the first method would generally be the more suitable choice.

Design and Implementation 15

3.1.2. Principal component analysis

PCA is a method of determining, for a given dataset, the direction along which the data varies the

most. The result of performing PCA on a 3D collection of points is two eigenvectors representing

the principal components (see Figure 3.1). This is achieved through the concept of dimensionality

reduction, where the number of dimensions 𝒑 within a dataset 𝑿 is reduced to a desired value 𝑳.

Firstly, the data is arranged as a set of 𝒏 vectors and placed in a matrix 𝑿 of dimensions 𝒏 × 𝒑.

The deviations from the centre of mass are then calculated by subtracting 𝑴 from each row of the

data matrix 𝑿. This is then stored in a matrix 𝑩 of size 𝒏 × 𝒑.

𝒉[𝒊] = 𝟏, 𝒊 = 𝟏…𝒏

𝑩 = 𝑿 − 𝒉𝒖𝑻

The covariance matrix 𝑪 is then calculated from the outer product of matrix 𝑩 with itself.

𝑪 =
𝟏

𝒏 − 𝟏
𝑩∗𝑩

(Where ∗ is the conjugate transpose operator)

Lastly, the matrix 𝑽 of eigenvectors that diagonalizes the covariance matrix 𝑪 is calculated using

the diagonal matrix 𝑫 of eigenvalues of 𝑪.

𝑽−𝟏𝑪𝑽 = 𝑫

𝑫 is a 𝒑 × 𝒑 diagonal matrix, where 𝝀𝒌 represents the 𝒌-th eigenvalue of the covariance matrix 𝑪.

𝑫[𝒌, 𝒍] = {
𝝀𝒌, 𝒌 = 𝟏
𝟎, 𝒌 ≠ 𝟏

In effect, this allows us to determine the direction of maximum variation in the mesh and the

direction of maximum variance perpendicular to this. These two vectors together form the

principle components, from which the hypothesis planes for reflective symmetry can be derived.

Figure 3.1: Example of PCA in 2D space

Design and Implementation 16

3.1.3. Hypothesis symmetry planes

Using the two eigenvectors calculated from PCA we then identify three hypothesis planes,

defined as follows:

- Plane 1: The plane containing both PCA eigenvectors.

- Plane 2: Formed by creating a plane along the first PCA eigenvector and which is also

orthogonal to Plane 1.

- Plane 3: Formed by creating a plane along the second PCA eigenvector and which is also

orthogonal to Plane 1.

In many symmetrical models, simply using the two PCA eigenvectors to form a plane is a good

method for finding the plane of reflective symmetry, yet in some models this is not the case. For

the model in Figure 3.2 for example, the two eigenvectors found point in the correct directions to

identify the plane of reflective symmetry. For the model in Figure 3.3 however, one of the

eigenvectors points in an incorrect direction. This is because the low flat body type of the fly

means that there is greater variation from left to right rather than top to bottom. For this reason

we also calculate the two planes which are orthogonal to the first plane but parallel to one of the

eigenvectors. This has been shown through experimentation to identify reflective symmetry in a

large number of 3D models (Dimitrov 2012).

With the hypothesis planes identified, it is necessary to calculate a symmetry measure for

determining whether or not each of the hypothesis planes is also a plane of reflective symmetry.

Two alternative methods for calculating this measure are proposed in the following sections.

Figure 3.2: PCA eigenvalues Figure 3.3: PCA eigenvalues

 for cow mesh for fly mesh

Design and Implementation 17

3.2 Hausdorff distance approach

The first method for calculating a symmetry measure uses a variation of the Hausdorff distance

algorithm to estimate a symmetry measure for each of the model’s hypothesis planes.

3.2.1. Mesh split and reflection

The mesh is first split into two smaller meshes using the hypothesis plane that is being tested.

This is done by iterating through each vertex 𝒗𝒊 within the mesh and allocating it to one of two

sets 𝑺𝒂 or 𝑺𝒃 based on its position relative to the hypothesis plane 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 = 𝟎.

𝒗𝒊 ∈ {
𝑺𝒂 𝒊𝒇 𝒂𝒗𝒙 + 𝒃𝒗𝒚 + 𝒄𝒗𝒛 < 𝟎

𝑺𝒃 𝒊𝒇 𝒂𝒗𝒙 + 𝒃𝒗𝒚 + 𝒄𝒗𝒛 > 𝟎

(Note that if 𝑎𝑣𝑥 + 𝑏𝑣𝑦 + 𝑐𝑣𝑧 is equal to zero then the vertex lies on the hypothesis plane and is

not an element of either set)

If the hypothesis plane is a global reflective symmetry plane then each of the meshes created

using these new vertex sets will be mirror images of each other. In order to determine whether

this is the case, the vertices within set 𝑺𝒂 are reflected about the hypothesis plane.

𝒗𝒙 = (𝟏 − 𝟐𝒂
𝟐)𝒗𝒙 − (𝟐𝒂𝒃)𝒗𝒚 − (𝟐𝒂𝒄)𝒗𝒛

𝒗𝒚 = (𝟏 − 𝟐𝒃
𝟐)𝒗𝒚 − (𝟐𝒂𝒃)𝒗𝒙 − (𝟐𝒃𝒄)𝒗𝒛

𝒗𝒛 = (𝟏 − 𝟐𝒄𝟐)𝒗𝒛 − (𝟐𝒂𝒄)𝒗𝒙 − (𝟐𝒃𝒄)𝒗𝒚

If the two meshes are now approximately the same it can be assumed that the hypothesis plane

is a plane of reflective symmetry.

3.2.2. Hausdorff distance symmetry measure

The Hausdorff distance is a similarity measure that is predominantly used to calculate the error

created by simplifying a mesh, but it can easily be modified for our purpose here. The Hausdorff

distance 𝒅𝑯 is defined between two non-empty datasets 𝑿 and 𝒀.

𝒅𝑯(𝑿, 𝒀) = 𝒎𝒂𝒙 {𝒎𝒂𝒙
𝒙∈𝑿

 𝒎𝒊𝒏
𝒚∈𝒀

 𝒅(𝒙, 𝒚) , 𝒎𝒂𝒙
𝒚∈𝒀

 𝒎𝒊𝒏
𝒙∈𝑿

 𝒅(𝒙, 𝒚)}

In context, this is calculated by taking each vertex within a mesh and finding the minimum

distance between it and any vertex on the other mesh. The same is then done with the meshes

swapped and the maximum of these minimal distances is defined as the Hausdorff distance

(Aspert, Santa-Cruz et al. 2002, Guthe 2005). Whilst this is good for measuring error during

simplification (Cignoni, Rocchini et al. 1996) it is not entirely effective for our purposes. This is

mainly because it returns the maximum deviation between the meshes, meaning that if our

model is perfectly symmetrical apart from a single outlier then this would result in a large

Design and Implementation 18

Hausdorff distance (see Figure 3.4). Instead, we are likely to get a better result if the average

distance is used as the similarity measure, rather than the maximum.

𝒅𝑯(𝑿, 𝒀) = 𝒎𝒂𝒙{
𝟏

|𝑿|
∑ 𝒎𝒊𝒏

𝒚∈𝒀
 𝒅(𝒙, 𝒚)

𝒙∈𝑿

,
𝟏

|𝒀|
∑ 𝒎𝒊𝒏

𝒙∈𝑿
 𝒅(𝒙, 𝒚)

𝒚∈𝒀

}

One disadvantage of this new approach is that it increases the time required to sample the mesh,

as we cannot apply any vertex culling or other traditional improvements to increase the

algorithm’s efficiency (Straub 2007, Barton, Hanniel et al. 2010).

In context, this new method is performed by taking each vertex within one of the meshes and

recording the shortest distance between it and any vertex on the other mesh. We then compute

the average of all these distances. The same is then done but with the meshes swapped and the

maximum of these two averages is taken as the total deviation. The inverse of this deviation can

then be used as a similarity measure. This level of similarity between these two meshes can also

be used to represent a measure of symmetry 𝑺 that the hypothesis plane has with respect to the

original model. If this value is above a pre-determined threshold, then we conclude that the

hypothesis plane is likely to be a plane of reflective symmetry.

3.2.3. Potential limitations

Whilst this method is simple to understand and implement, it suffers from being extremely

inefficient and overly reliant on the sampling resolution of the model. This algorithm can

potentially require exponential time, meaning that this method is impractical for models where

the number of vertices is very high. Scanned 3D models can potentially contain millions of

vertices, necessitating the creation of an alternative method for detecting symmetry which avoids

these problems.

Figure 3.4: Hausdorff distance calculation

 𝒎𝒂𝒙
𝒚∈𝒀

 𝒎𝒊𝒏
𝒙∈𝑿

 𝒅(𝒙, 𝒚)

𝒎𝒂𝒙
𝒙∈𝑿

 𝒎𝒊𝒏
𝒚∈𝒀

 𝒅(𝒙, 𝒚)

Design and Implementation 19

3.3 Ray casting approach

The second method for calculating a symmetry measure attempts to avoid the problem of

sampling rate dependence by using ray casting to create a set of mesh intersection points.

3.3.1. Orientate plane and mesh

In order to simplify the ray casting algorithm, the model is first rotated so that the hypothesis

plane aligns with the plane created by the x and y axis in world space. Firstly, the angle 𝜽 and

direction 𝑫 by which to rotate the plane 𝑷 are calculated.

𝑫𝒐𝒕(𝑨,𝑩) = 𝑨𝒙𝑩𝒙 + 𝑨𝒚𝑩𝒚 + 𝑨𝒛𝑩𝒛

𝑪𝒓𝒐𝒔𝒔(𝑨,𝑩) = 〈𝑨𝒚𝑩𝒛 − 𝑨𝒛𝑩𝒚 , 𝑨𝒛𝑩𝒙 − 𝑨𝒙𝑩𝒛 , 𝑨𝒙𝑩𝒚 − 𝑨𝒚𝑩𝒙〉

𝜽 = 𝐜𝐨𝐬−𝟏(𝑫𝒐𝒕(𝑷, 〈𝟎, 𝟎, 𝟏〉))

𝑫 = 𝑪𝒓𝒐𝒔𝒔(𝑷, 〈𝟎, 𝟎, 𝟏〉)

For every vertex 𝑽 within the mesh, a new position is then determined.

𝑽𝒙 = (𝑫𝒙
𝟐(𝟏 − 𝐜𝐨𝐬𝜽) + 𝐜𝐨𝐬 𝜽)𝑽𝒙 + (𝑫𝒙𝑫𝒚(𝟏 − 𝐜𝐨𝐬𝜽) − 𝑫𝒛 𝐬𝐢𝐧 𝜽)𝑽𝒚

+ (𝑫𝒙𝑫𝒛(𝟏 − 𝐜𝐨𝐬𝜽) + 𝑫𝒚 𝐬𝐢𝐧𝜽)𝑽𝒛

𝑽𝒚 = (𝑫𝒙𝑫𝒚(𝟏 − 𝐜𝐨𝐬𝜽) + 𝑫𝒛 𝐬𝐢𝐧 𝜽)𝑽𝒙 + (𝑫𝒚
𝟐(𝟏 − 𝐜𝐨𝐬𝜽) + 𝐜𝐨𝐬 𝜽)𝑽𝒚

+ (𝑫𝒚𝑫𝒛(𝟏 − 𝐜𝐨𝐬𝜽) − 𝑫𝒙 𝐬𝐢𝐧 𝜽)𝑽𝒛

𝑽𝒛 = (𝑫𝒙𝑫𝒛(𝟏 − 𝐜𝐨𝐬 𝜽) − 𝑫𝒚 𝐬𝐢𝐧 𝜽)𝑽𝒙 + (𝑫𝒚𝑫𝒛(𝟏 − 𝐜𝐨𝐬 𝜽) + 𝑫𝒙 𝐬𝐢𝐧 𝜽)𝑽𝒚

+ (𝑫𝒛
𝟐(𝟏 − 𝐜𝐨𝐬𝜽) + 𝐜𝐨𝐬 𝜽)𝑽𝒛

We can now treat the hypothesis plane as simply the plane formed by connecting the x and y axis

(the plane z = 0).

3.3.2. Ray casting and intersection

A set number of rays are then uniformly cast through the mesh along the z-axis. Due to the prior

mesh rotation this has the effect of casting the rays through the mesh in the direction

perpendicular to the hypothesis plane being tested. The origin points of the rays are set as one

less than the lowest z-axis value of the mesh’s vertices. The rays are linearly positioned along the

x and y axis, determined by the newly rotated meshes bounding box. If a ray intersects with the

mesh then the positions at which it intersects are recorded for use in calculating the symmetry

measure. Intersections are determined using a simple ray-triangle intersection algorithm (see

Figure 3.5) which calculates the distance 𝒕 that the ray has travelled before each triangle

Design and Implementation 20

intersection (Choi 1995, Moller and Trumbore 1997). The ray is defined with an origin point 𝑶

and a direction 𝑫, with each triangle being defined in terms of the location of its corners 𝑪𝒙, 𝑪𝒚

and 𝑪𝒛.

𝑨 = 𝑫𝒐𝒕 (𝑪𝒚𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝒓𝒐𝒔𝒔(𝑫, 𝑪𝒛𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗))

𝑼 =
𝟏

𝑨
𝑫𝒐𝒕 (𝑶𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝒓𝒐𝒔𝒔(𝑫, 𝑪𝒛𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗))

𝑽 =
𝟏

𝑨
𝑫𝒐𝒕 (𝑫, 𝑪𝒓𝒐𝒔𝒔(𝑶𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝒚𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗))

𝒕 = {

𝟏

𝑨
𝑫𝒐𝒕 (𝑪𝒛𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑪𝒓𝒐𝒔𝒔(𝑶𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝒚𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)) 𝒊𝒇 𝑨 ≠ 𝟎,𝑼 > 𝟎,𝑼 < 𝟏, 𝑽 > 𝟎,𝑼 + 𝑽 < 𝟏

−𝟏 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

As the origin point of each ray is also known, it is a trivial calculation to determine the location of

each intersection. These intersections are then split into two sets based on which side of the

hypothesis plane they are on.

The efficiency of the ray-triangle intersection algorithm can be improved by first checking

whether the ray being tested intersects any of the triangles’ bounding boxes. Only if the ray

intersects this bounding box will the normal ray-triangle intersection algorithm be carried out.

This initial check is performed very quickly and as many of the triangles’ bounding boxes will not

intersect with the ray, this helps reduce the overall running time for the majority of models.

3.3.3. Ray casting symmetry measure

The total deviation 𝑻 between the models on each side of the hypothesis plane is calculated based

on the two sets of intersection points 𝑨 and 𝑩 for the set of all rays 𝑹 and the hypothesis plane 𝑷.

𝑻 = ∑

{

 𝒎𝒂𝒙 {∑𝐦𝐢𝐧

𝒃∈𝑩
 𝒅(𝒂, 𝒃),∑𝐦𝐢𝐧

𝒂∈𝑨
 𝒅(𝒂, 𝒃),

𝒃∈𝑩𝒂∈𝑨

} 𝒊𝒇 |𝑨| > 𝟎, |𝑩| > 𝟎

∑𝒅(𝒂, 𝑷)

𝒂∈𝑨

 𝒊𝒇 |𝑨| > 𝟎, |𝑩| = 𝟎

∑𝒅(𝒃,𝑷)

𝒃∈𝑩

 𝒊𝒇 |𝑩| > 𝟎, |𝑨| = 𝟎

𝟎 𝒊𝒇 |𝑨| = 𝟎, |𝑩| = 𝟎

𝒓∈𝑹

Design and Implementation 21

This means that for each ray there are three possible outcomes.

- No intersection points are found. The ray is ignored and no calculation is done.

- There are one or more intersection points on only one side of the hypothesis plane. The sum of

the distances between each intersection point and the hypothesis plane is added to the total

deviation.

- There are one or more intersection points on both sides of the hypothesis plane. The sum of the

minimum distances between each of the points in one set and any point in the other set is

calculated. The same is then done but with the two sets swapped. Whichever of these two “sums

of minimum differences” is greater is then added to the total deviation.

Once all rays have been checked, the total deviation is divided by the number of rays which

intersected the mesh. The inverse of this deviation is then used as a measure of symmetry 𝑺 that

the hypothesis plane has with respect to the original model. Much like the Hausdorff distance

approach, if this value is above a pre-determined threshold we conclude that the hypothesis

plane is likely to be a plane of reflective symmetry.

Figure 3.5: Ray ‘a’ intersects the triangle but ray ‘b’ does not

(Choi 1995)

Design and Implementation 22

3.4 Symmetry measure normalisation

Whilst both the Hausdorff distance and ray casting approaches calculate a measure of symmetry,

this value is not normalised across models of different sizes. This is important for the

determination of a suitable threshold to use when detecting approximate symmetry. The best

way to normalise the symmetry measure is to multiply it by the cube root of the model’s volume.

This is very difficult to compute however, since many of the scanned models contain holes or

other distortions. Instead, there are two main ways for estimating the volume of a model.

3.4.1 Bounding box

The easiest method for estimating the volume 𝑬 of a model 𝑴 with a set of vertices 𝑽 is to simply

use the volume of the mesh’s bounding box.

𝑬 = (𝒎𝒂𝒙
𝒗∈𝑽

𝒗𝒙 −𝒎𝒊𝒏
𝒗∈𝑽

𝒗𝒙) (𝒎𝒂𝒙
𝒗∈𝑽

𝒗𝒚 −𝒎𝒊𝒏
𝒗∈𝑽

𝒗𝒚) (𝒎𝒂𝒙
𝒗∈𝑽

𝒗𝒛 −𝒎𝒊𝒏
𝒗∈𝑽

𝒗𝒛)

Whilst this method is both fast and simple it lacks accuracy, especially for models which do not

sufficiently fill the bounding box.

3.4.2 Signed volume of a tetrahedron

A more complex alternative is to estimate the model’s volume by calculating the signed volume of

a tetrahedron based on each triangle 𝒕 within the model(Cha and Tsuhan 2001). These individual

volumes are then summed together and the absolute value of this is used as an estimate for the

model’s volume.

𝑬 = |∑𝑫𝒐𝒕 (𝒗𝒂, (𝑪𝒓𝒐𝒔𝒔 (𝒗𝒃, 𝒗𝒄)))

𝒕∈𝑴

|

(Note each triangle is made of three vertices 𝒗𝒂, 𝒗𝒃 and 𝒗𝒄)

This second method generally provides a better estimate of the model’s volume and was therefore

chosen to normalise the symmetry measures.

For each model, the cube root of this volume estimate is multiplied by the symmetry measure to

create a normalised value that could be compared against a symmetry threshold.

𝑺𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒔𝒆𝒅 = 𝑺 √𝑬
𝟑

Design and Implementation 23

3.5 Additional variations

In the previous sections we have detailed the general frameworks for our two proposed symmetry

detection algorithms. However, there are several additional variations that we have implemented

which attempt to improve these methods further.

3.5.1 Polygon reduction

One of the main limitations with the two methods described is the large amount of time needed

to analyse detailed models, particularly with the Hausdorff distance approach. In order to reduce

the overall computation time we can reduce the number of polygons within the mesh before

attempting symmetry detection. One of the main polygon reduction methods is to use quadric

error metrics (Garland and Heckbert 1997). This simplifies the mesh by iteratively contracting

edges until the desired number of vertices or faces remains (see Figure 3.6). The choice about

which edge to remove is determined by approximating the error cost of each possible contraction

between a pair of vertices. The algorithm then iteratively removes the pair with minimum cost,

and updates any affected edges.

Figure 3.6: Edge contraction into a single point (Garland and Heckbert 1997)

The cost of contracting an edge is derived using quadrics, which are constructed by using a

heuristic to characterise the geometric error. Firstly, the plane equation is determined for each

triangle within the original model, defined by the equation 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 = 𝟎 where 𝒂𝟐 + 𝒃𝟐 +

 𝒄𝟐 = 𝟏. The derived plane is then represented in the form 𝒑 = [𝒂 𝒃 𝒄 𝒅]𝑻. The error for each vertex

can then be defined with respect to the sum of squared distances to its intersecting planes.

∆(𝒗) = ∆([𝒗𝒙 𝒗𝒚 𝒗𝒛 𝟏]
𝑻
) = ∑ (𝒑𝒕𝒗)𝟐

𝒑∈𝒑𝒍𝒂𝒏𝒆𝒔(𝒗)

 In addition, a matrix 𝑲𝒑 is constructed for each triangle.

𝑲𝒑 = 𝒑𝒑
𝑻 = [

𝒂𝟐 𝒂𝒃 𝒂𝒄 𝒂𝒅
𝒂𝒃 𝒃𝟐 𝒃𝒄 𝒃𝒅
𝒂𝒄 𝒃𝒄 𝒄𝟐 𝒄𝒅
𝒂𝒅 𝒃𝒅 𝒄𝒅 𝒅𝟐

]

Design and Implementation 24

Allowing the error metric to be written in a solvable quadratic form.

∆(𝒗) = 𝒗𝑻 (∑ 𝑲𝒑
𝒑∈𝒑𝒍𝒂𝒏𝒆𝒔(𝒗)

)𝒗

The overall result of these edge contractions is that they can be used to greatly reduce the total

number of computations required to detect symmetry within 3D models. This also potentially

improves the algorithm’s accuracy by making dense groups of vertices sparser, resulting in a

more uniform spread of the model’s vertices. However, too much simplification is likely to result

in an increased error rate. A visual display of these reductions can be seen in Figure 3.7.

Figure 3.7: A collection of simplified models, the number

of faces reduced by approximately half each time (Garland and Heckbert 1997)

3.5.2 Laplacian smoothing

Another potential improvement which may improve our algorithms’ accuracy is to smooth the

mesh before performing symmetry detection. Whilst there are many different smoothing

functions for 3D objects, the most common and simple of these is Laplacian smoothing. The

Laplacian smoothing algorithm is a method designed to smooth a 3D polygonal mesh by changing

the location of each vertex to the average of its adjacent vertices (see Figure 3.8). This can be

achieved in O(n) time and space. The formal definition for the Laplacian smoothing operation can

be defined per-vertex as,

𝒑𝒊 =
𝟏

𝑵
∑𝒒𝒋

𝑵

𝒋=𝟏

Where 𝑵 represents the number of vertices connected by an edge to the vertex 𝒊 and 𝒑𝒊 is the new

position for vertex 𝒊 based on the adjacent positions 𝒒𝒋

There are two main variations for updating the positions of the vertices. The first updates the

positions of the vertices in a single step and all vertices use the same original set of positions to

update their locations. This is known as the simultaneous version. The second updates the

positions of each vertex immediately after it is computed, meaning that early adjustments can

influence later ones. This is known as the sequential version. Whilst the simultaneous version

requires more memory space than the sequential version, it usually produces better results,

meaning that this is the technique that is most commonly used.

Design and Implementation 25

Figure 3.8: The basic Laplacian smoothing algorithm

(Vollmer, Mencl et al. 1999)

Whilst this algorithm is simple to understand and implement, it suffers from some key problems.

The most significant is the deformation and shrinkage of the mesh after many repeated

iterations. A popular variant of the Laplacian smoothing algorithm, referred to as the HC

Laplacian algorithm, is designed specifically for noisy surface meshes and attempts to avoid

these problems (Vollmer, Mencl et al. 1999). This algorithm reduces shrinkage by pushing the

vertices that have been adjusted by the Laplacian smoothing iterations back towards their

original location (see Figure 3.9). More specifically, the modified points 𝒑𝒊 are moved towards the

previous points 𝒒𝒊 with a distance 𝒅𝒊 equal to the average of the differences.

𝒃𝒊 = 𝒑𝒊 − 𝒒𝒊

𝒅𝒊 = −
𝟏

𝑵
∑𝒃𝒋

𝑵

𝒋=𝟏

Whilst this does not completely remove the problem of shrinkage it does dramatically reduce its

effect, particularly for models that contain noise. This makes it an ideal candidate for testing the

effects of smoothing a model before attempting to detect symmetry. Unlike polygon reduction,

Laplacian smoothing only alters the positions of the model’s vertices. This means that the time

taken to analyse a smoothed model will be approximately the same as the original, although the

smoothing takes a small amount of time. A visual comparison of the results of these two

algorithms can be seen in Figure 3.10.

Design and Implementation 26

Figure 3.9: The HC Laplacian algorithm variation of the Laplacian smoothing algorithm

(Vollmer, Mencl et al. 1999)

Figure 3.10: From left to right: original model, model smoothed using basic Laplacian smoothing

algorithm, model smoothed using HC Laplacian smoothing algorithm

3.5.3 RANSAC

Although it has been demonstrated that using PCA to identify potential symmetry planes is

robust against minor noise, for models with only approximate symmetry and a heavy leaning

away from the most symmetrical plane, the PCA method may not provide the best estimation.

There are no easy ways of resolving this without considerably reducing the efficiency of the

overall method. However, if this is not a problem then using the RANSAC algorithm may reduce

the influence of outliers. The RANSAC (RANdom SAmple Consensus) algorithm is a general

method used to fit a model to data which is contaminated with gross outliers. In this case we can

apply RANSAC to our method of identifying the PCA eigenvectors using the mesh’s vertex set.

Design and Implementation 27

1. Firstly, the complete set of vertices is used for the determination of both the PCA

eigenvectors and the symmetry measure for each hypothesis plane.

2. If no likely planes of reflective symmetry are found, then the PCA eigenvectors for the

model are recalculated using a set percentage of randomly selected points.

3. The hypothesis planes for the new PCA eigenvectors are then calculated.

4. The symmetry measure for each of these planes is then determined using all the original

vertices, not just those that were randomly selected.

5. If any of these planes are found to be likely planes of reflective symmetry then they are

recorded, otherwise repeat from step 2.

While this is a very naïve and inefficient algorithm for improving symmetry detection, it works

well in cases where computation time is not a major factor.

3.5.4 𝒌-d tree

A 𝑘-d tree is a space partitioning data structure for organising points in 𝑘-dimensional space

(Bentley 1975). Formally, a 𝑘-d tree is a binary partitioning where the the split operation is

performed cyclically along each axis direction using axis-aligned hyper-planes.

For our method, we use a 𝑘-d tree to potentially improve the overall runtime of our ray casting

approach by reducing the time taken to find ray-triangle intersections. Although we have already

improved the runtime slightly by first performing an intersection test for each ray using the

triangles’ bounding boxes, using a 𝑘-d tree may improve this even more. In this case we set 𝑘=2

as we do not need to partition the mesh along the z-axis, as this is the direction along which the

rays are cast.

The 𝑘-d tree is constructed by recursively splitting the sets of vertices (initially all vertices are in

one set) into two smaller subsets based on the median of either the x or y value of their positions

(the axis to split on is swapped for each iteration). Each iteration effectively doubles the number

of vertex sets and once a desired depth is reached the algorithm halts (see Figure 3.11).

This 𝑘-d tree can now be used during ray casting to reduce the total number of ray-triangle

intersection tests that need to be carried out. Firstly, we determine which of the 𝑘-d tree subsets

the ray will intersect. We then perform our regular intersection algorithm but only for the

triangles which have at least one of their vertices within the subset that the ray intersected. The

triangles that each 𝑘-d tree subset is associated with are determined before any rays are cast to

prevent repeat calculations. This method may be used alongside, or instead of, the original

bounding box improvement.

There is a small issue with this method however, which may decrease the accuracy of the

symmetry detection. It is entirely possible (especially for implementations where the depth of the

𝑘-d tree is high) for a situation to arise where none of a triangle’s vertices are located within a

particular subset but part of the triangle is. This results in an inaccurate reading for any rays

that may pass through this portion of the triangle. This particular problem is demonstrated

visually in Figure 3.12. Whilst there are more sophisticated methods for correctly identifying

Design and Implementation 28

which subsections intersect the triangle, they take much longer to run, counteracting any

potential runtime reduction. This means that a 𝑘-d tree should only be used in situations where

time is a critical factor and should ideally be paired with a low number of rays being cast.

Figure 3.11: 𝑘-d tree partition over subsequent iterations

(Standford 2000)

Figure 3.12: The problem with 𝑘-d tree method, the triangle’s vertices are only located within

three sections but the triangle actually overlaps four sections

3.5.5 Non-uniform casting

Another potential variation to the ray casting method is to improve upon the regular uniform

casting to a more advanced non-uniform method. There are many different ways to perform this

but we will only focus on one of them.

Design and Implementation 29

One of the simplest methods to improve upon uniform ray casting is to base the distribution of

the rays on the distribution of the model’s vertices. This is performed by spreading the rays along

the model, based on the number of vertices rather than the total length (see Figure 3.13). This

results in the algorithm obtaining a greater level of information for the sections of the model

which contain more vertices and less information about the sections with fewer vertices.

In context, this is achieved by first sorting the vertices into order along the x and y axis (after the

vertices and plane have been orientated correctly). Each of these sorted sets (one for x-axis

ordering 𝑿 and the other for y-axis ordering 𝒀) is then split into subsets based on the number of

rays 𝑹 that are being cast along each axis. The starting position for the rays are then determined

by taking the first value of each set for all possible pairings of the x-axis ordered subsets and y-

axis ordered subsets.

𝒙-𝒂𝒙𝒊𝒔 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 = 𝑿𝒑 = {𝒙: 𝒙 = 𝑿
𝒏
|𝑿|
𝑹

 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟎 𝒂𝒏𝒅 𝑹 − 𝟏}

𝒚-𝒂𝒙𝒊𝒔 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 = 𝒀𝒑 = {𝒚: 𝒚 = 𝒀
𝒏
|𝒀|
𝑹

 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟎 𝒂𝒏𝒅 𝑹 − 𝟏}

𝑵𝒐𝒏-𝒖𝒏𝒊𝒇𝒐𝒓𝒎 𝒓𝒂𝒚 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 = {(𝒙, 𝒚) 𝒘𝒉𝒆𝒓𝒆 𝒙 ∈ 𝑿𝒑 𝒂𝒏𝒅 𝒚 ∈ 𝒀𝒑}

Figure 3.13: Comparison of uniform ray casting and non-uniform ray casting for a set of vertices

in one direction

3.6 Summary

Within this chapter we have detailed the design and implementation of two general algorithms

for detecting global approximate reflective symmetry within scanned 3D models (Hausdorff and

ray casting), as well as several additional variations which attempt to improve their runtime

and/or accuracy (polygon reduction, Laplacian smoothing, RANSAC, 𝑘-d tree, non-uniform

casting). The next chapter details our evaluation of each method and variation.

Design and Implementation 30

Figure 3.14: Flowchart of the entire program

Start

Polygon

reduction

Laplacian

smoothing

Identify hypothesis

planes (PCA)

Choose

method
Hausdorff distance

symmetry measure
𝒌-d tree

Non-uniform

ray casting

Uniform ray

symmetry measure

Non-uniform ray

symmetry measure

Symmetry measure

normalisation

RANSAC

Finish

Hausdorff Ray

Yes No

No

Yes

Compulsory

task

Optional

task

Decision

Legend

Results 31

4 Results

4.1 Experimental design

The testing of both the Hausdorff distance and ray casting methods, as well as all applicable

variations, was initially performed using the Princeton Shape Benchmark (PSB) (Shilane, Min et

al. 2004). This is a database containing 1814 3D polygonal meshes and has been used previously

to test many model analysis programs. The models within this database vary greatly in terms of

their size, detail and of course their symmetry.

After this, more specific tests were conducted using a smaller collection of 32 scanned 3D models

(all of which can be viewed in the appendix). These models were obtained using the scanning

program 123DCatch (Catch 2015). This set of models was also used to determine a suitable

threshold for the symmetry measure of each method.

The lack of available source code for other prior methods made it difficult to compare our

algorithms accuracy and runtime against them. As a result, we have only been able to compare

our implementations against each other, for various different inputs and parameters.

Testing was performed on a machine running Windows 8.1 with an i7-4690 processor and 16GB

of RAM. Both algorithms were developed in C++ using Microsoft Visual Studio 2013.

4.2 Overall accuracy

Whether an object has approximate symmetry depends very much on the desired level of

accuracy. There is no mathematical definition of approximate symmetry and it is generally left

for the user to decide whether the symmetry is sufficient enough for their purpose. Both our

methods demonstrated 100% accuracy when applied to models containing perfect symmetry, but

the accuracy for approximate symmetry detection is more difficult to quantify (see Figure 4.1).

How much each half of a perfectly symmetrical model may differ before it is no longer considered

approximately symmetrical is ultimately dictated by the desired application.

To gain a better measure of accuracy, each method was used to detect global reflective symmetry

within the collection of 32 scanned 3D models. All of the real-world objects used in these scans

had a high level of approximate reflective symmetry, although the models were distorted slightly

by the scanning process. For each model, three hypothesis planes were identified by PCA and the

correct plane of reflective symmetry was determined manually.

Results 32

Each of our symmetry detection methods were then applied to each of the hypothesis planes

identified by PCA. Each of these planes was then given a symmetry measure representing the

level of reflective symmetry the model has with respect to this plane. The symmetry measure for

the correct plane of reflective symmetry was then compared against the values for the other two

incorrect planes. For the ray casting approach several variations on the number of rays cast were

tested (25,100, 400 and 2500 rays).

The graphs for the Hausdorff distance and the ray casting variant with 400 rays are shown in

Figures 4.2 and 4.3 respectively.

We have decided to show only certain key graphs for each results section. Graphs that are not

given here can be found in Appendix B. (Note, although the data obtained in these experiments

was discrete it is easier to understand and compare the methods if line graphs are used).

(a) (b)

Figure 4.1: Although no official definition is available we would typically consider model (a) to

contain approximate reflective symmetry, but not model (b)

Results 33

Figure 4.2: The reflective symmetry measure given to each model’s hypothesis planes using the

Hausdorff distance based method

Figure 4.3: The reflective symmetry measure given to each model’s hypothesis planes using the

ray casting based method with a 20x20 grid of rays

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Hausdorff Distance Symmetry Measure

Correct Plane

Incorrect Plane

Incorrect Plane

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Ray Casting Symmetry Measure (400 Rays)

Correct Plane

Incorrect Plane

Incorrect Plane

Results 34

The ideal result from these experiments would be to have all the values for the symmetry

measure of the correct plane greater than any value from either of the other two incorrect planes

(no overlap between these sets). This would allow us to easily derive a threshold value which

could then be used to identify symmetry planes in unknown models. In order to determine an

approximate level of overlap we can calculate the index of dispersion 𝑫 for the difference between

the symmetry measure of the correct hypothesis plane 𝑪 and the greatest incorrect plane 𝑰. A

lower 𝑫 value means less overlap and improved accuracy (see Figure 4.4).

𝑫 =
𝝈𝟐

𝝁

𝝁 =
𝟏

𝑵
∑𝑪𝒂 −

𝟏

𝑵
∑𝑰𝒃

𝑵

𝒃=𝟏

𝑵

𝒂=𝟏

𝝈𝟐 = 𝒗𝒂𝒓(𝑪) + 𝒗𝒂𝒓(𝑰) + 𝟐(𝒄𝒐𝒗(𝑪, 𝑰))

𝒗𝒂𝒓(𝑿) =
𝟏

𝒏
∑(𝒙𝒊 − 𝝁)

𝟐

𝒏

𝒊=𝟏

𝒄𝒐𝒗(𝑿, 𝒀) =
𝟏

𝒏𝟐
∑∑

𝟏

𝟐
(𝒙𝒊 − 𝒙𝒋) ∙ (𝒚𝒊 − 𝒚𝒋)

𝑻
𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

Figure 4.4: The index of dispersion for each method

0

10

20

30

40

50

60

70

80

Hausdorff
distance

Ray casting (25) Ray casting (100) Ray casting (400) Ray casting
(2500)

In
d

e
x

o
f

D
is

p
e

rs
si

o
n

Index of Dispersion

Results 35

The Hausdorff distance method gave the lowest index of dispersion although it did have several

instances where the correct plane received a lower measure than an incorrect plane. The first of

the ray casting algorithms, with only 25 rays, has a higher index of dispersion than the other

three ray casting variations. This is likely due to the low number of rays that were cast, resulting

in the algorithm not having sufficient data to make a good estimate of reflective symmetry. The

other three ray casting algorithms all produced very similar results, indicating that it is unlikely

that the estimates could be improved further by increasing the number of rays. As a result of this

similarity, the 400 ray variant was chosen as a baseline for the potential improvements as it had

the lowest index of dispersion. It is likely that any of the proposed enhancements would perform

similarly with the 100 and 2500 ray variants. For the ray casting approach model 8 was a clear

outlier, with a very large symmetry measure for one of its incorrect planes. This was due to our

ray casting method failing to sample the model effectively and is further discussed in Section 5.3.

Model 8 was therefore removed for subsequent calculations of the index of dispersion to give a

better comparison between the ray casting and Hausdorff distance approaches (see Figure 4.5).

Figure 4.5: The index of dispersion for each method with model 8 removed for ray casting

4.3 Overall runtime

The speed of each of our methods varies depending upon different factors. For the Hausdorff

distance method the runtime of the algorithm increases relative to the number of vertices the

model has. For the ray casting method the runtime of the algorithm increases relative to both the

number of faces the model has and how many rays are cast through it. Fortunately, the

relationship between the number of vertices and number of faces within a model is typically very

linear, with the number of faces approximately double the number of vertices. This allows us to

compare the runtime of both methods against the number of vertices within the model, making it

easier to compare each method’s runtime (see Figures 4.6 and 4.7).

0

5

10

15

20

25

30

35

40

Hausdorff
distance

Ray casting (25) Ray casting (100) Ray casting (400) Ray casting
(2500)

In
d

e
x

o
f

D
is

p
e

rs
si

o
n

Index of Dispersion

Results 36

Figure 4.6: The total runtime for each algorithm relative to the number of vertices in the model

for the all models within the Princeton Shape Benchmark

Figure 4.7: The total runtime for each algorithm relative to the number of vertices in the model

for the set of scanned models

0

20

40

60

80

100

120

140

160

180

0 50000 100000 150000 200000

O
ve

ra
ll

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Vertices

Vertex Number vs. Runtime

Hausdorff

Ray (25)

Ray (100)

Ray (400)

Ray (2500)

0

20

40

60

80

100

120

140

160

180

200

0 50000 100000 150000 200000

O
ve

ra
ll

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Vertices

Vertex Number vs. Runtime

Hausdorff

Ray (25)

Ray (100)

Ray (400)

Ray (2500)

Results 37

The previous graphs indicate that the time complexity for the Hausdorff distance method is

approximately O(n2), whereas the time for each of the ray casting algorithms is closer to linear.

Even the slowest ray casting method tested (50x50 rays) becomes faster than the Hausdorff

distance method for a relatively low number of vertices (approximately 80,000 vertices).

Variations using a lower number of rays become faster than the Hausdorff distance method for

an even lower number of vertices. This means that for a large majority of models the ray casting

approach is quicker than the Hausdorff distance approach, assuming the number of rays cast is

sufficiently low. There also appears to be more variation in the runtime of the ray casting

methods when compared to the Hausdorff distance method.

4.4 Additional Variations

4.4.1 Polygon reduction

Polygon reduction can be used to dramatically reduce the overall runtime of both our symmetry

detection methods. However, if the amount of polygon reduction is too large the accuracy of our

algorithms will suffer. Also, as many of the models within the PSB were designed to have a very

low number of faces, polygon reduction would not be suitable. Because of this, the results for

polygon reduction were only obtained using the set of 32 scanned models. Polygon reduction was

tested using both 50% reduction (see Appendix B.) and 90% reduction (see Figures 4.8 and 4.9).

The index of dispersion (see Figure 4.10) and runtime (see Figure 4.11) was also recorded.

Figure 4.8: The reflective symmetry measure given to each model’s hypothesis planes using the

Hausdorff distance based method after the model has had 90% of its polygons removed

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Hausdorff Distance Symmetry Measure (90% Reduction)

Correct Plane

Incorrect Plane

Incorrect Plane

Results 38

Figure 4.9: The reflective symmetry measure given to each model’s hypothesis planes using the

ray casting based method after the model has had 90% of its polygons removed

Figure 4.10: The index of dispersion for each method with and without polygon reduction

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Ray Casting Symmetry Measure (90% Reduction)

Correct Plane

Incorrect Plane

Incorrect Plane

0

5

10

15

20

25

30

Hausdorff
distance

Hausdorff
distance (50%)

Hausdorff
distance (90%)

Ray casting Ray casting
(50%)

Ray casting
(90%)

In
d

e
x

o
f

D
is

p
e

rs
io

n

Index of Dispersion (Polygon Reduction)

Results 39

Figure 4.11: The total runtime for each method relative to the number of vertices in the model

after it has had 90% of its polygons removed

From these results we can see that polygon reduction not only dramatically reduces the runtime

of both methods (see Table 4.1) but also improved their accuracy for a large proportion of the

models. 90% polygon reduction appears to be the best choice for both time and accuracy, with the

lowest speed and index of dispersion for both methods. Whilst some extra time was taken to

reduce the models beforehand, the time that was needed to analyse the reduced meshes was

significantly reduced. This reduction in the number of polygons also has the effect of making the

spread of the model’s vertices more uniform, reducing the influence of any large vertex clusters or

irregular sampling. This had a major effect not only on the accuracy of the Hausdorff distance

method but also for the ray casting approach (although the impact was less pronounced).

Although the accuracy and speed of both algorithms has been improved by polygon reduction,

there are other potential improvements that may provide even more benefits.

 Original 50% reduction 90% reduction

Hausdorff distance 70.53 18.09 1.18

Ray casting (400) 7.92 4.16 1.11

Table 4.1: Average runtime (sec) for symmetry detection using scanned models in sample dataset

4.4.2 Laplacian smoothing

HC Laplacian smoothing was applied to each of the scanned models after they had been subject

to 90% polygon reduction to see if this would provide even better accuracy. Laplacian smoothing

is extremely quick and thus has little impact on the overall runtime of each method.

Unfortunately, after comparing the results for Laplacian smoothing against the original data, it

would appear that the improvements (if any) are minimal (see Figure 4.12).

0

0.5

1

1.5

2

2.5

3

0 5000 10000 15000 20000

O
ve

ra
ll

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Vertices

Vertex Number vs. Runtime (90% Reduction)

Hausdorff

Ray

Results 40

Figure 4.12: The index of dispersion for each method with and without Laplacian smoothing

4.4.3 RANSAC

Using RANSAC to improve the identification of hypothesis planes by PCA is an inefficient and

often unnecessary variation, due to the large amount of time that it takes with no guarantee of

improvement. It is therefore only advised for situations where the time taken is secondary to the

detection accuracy. As RANSAC selects the vertices randomly, it is difficult to obtain any

meaningful results from experimentation. Although RANSAC can improve symmetry detection

accuracy, the time taken to find any improvements is always unknown. For each RANSAC

iteration the base algorithm is started again from the beginning, greatly increasing the overall

runtime (ten RANSAC iterations means the runtime is approximately ten times longer).

4.4.4 𝒌-d tree

Using a 𝑘-d tree to divide up the model’s faces before performing ray casting can potentially

decrease the overall runtime, assuming the depth for the 𝑘-d tree is chosen correctly. The

maximum depth that a 𝑘-d tree can theoretically have for a model with 𝑽 vertices is between √𝑽

and 𝑽. However, as our model’s vertices are located in three dimensions and our 𝑘-d tree is only

constructed in two dimensions the depth will likely be less than this. This is due to the fact that

some of the model’s vertices will have the same x and y axes coordinates but have a different z-

axis value. This makes it difficult to establish a perfect depth that the 𝑘-d tree should have, even

if the number of vertices is known. To gain a good estimate however, many different depths were

0

5

10

15

20

25

Hausdorff distance Hausdorff distance
(Laplacian)

Ray casting Ray casting
(Laplacian)

In
d

e
x

o
f

D
is

p
e

rs
io

n

Index of Dispersion (Laplacian Smoothing)

Results 41

tested for a small collection of the scanned models (see Figures 4.13 and 4.14). Ray casting was

performed using 400 rays.

Figure 4.13: The total runtime for each model relative to the depth of the 𝑘-d tree

Figure 4.14: The total runtime for each of the smaller models relative to the depth of the 𝑘-d tree

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

O
ve

ra
ll

R
u

n
ti

m
e

 (
se

co
n

d
s)

𝒌-d Tree Depth

𝒌-d Tree Depth vs. Runtime

Model #25

Model #5

Model #9

Model #6

Model #1

Model #16

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O
ve

ra
ll

R
u

n
ti

m
e

 (
se

co
n

d
s)

𝒌-d Tree Depth

𝒌-d Tree Depth vs. Runtime

Model #25

Model #5

Model #9

Results 42

Only the smaller models (less than 70,000 vertices) showed any improvement with respect to the

original method (𝑘-d tree depth equal to zero). The decrease in their runtime was also fairly

small, with the peak improvement typically between depth = 10 and depth = 20. This means that

whilst using a 𝑘-d tree can potentially reduce the algorithm’s overall runtime for smaller models,

it usually requires more time if used on larger models. This, coupled with the potential decrease

in accuracy, means that using a 𝑘-d tree is generally not advisable.

4.4.5 Non-uniform casting

Using the distribution of the vertices to determine the positions from which to cast rays may also

potentially improve the accuracy of the ray casting method. The ray casting method with 400

rays was tested using non-uniform casting to see if there was any improvement in accuracy (see

Figures 4.15 and 4.16). While this new casting method does take slightly more time than uniform

casting as the vertices need to be sorted beforehand, the impact of this on the total runtime is

negligible.

Figure 4.15: The reflective symmetry measure given to each model’s hypothesis planes using the

ray casting based method with non-uniform casting after the model has been reduced

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Ray Casting Symmetry Measure (Non-Uniform Casting)

Correct Plane

Incorrect Plane

Incorrect Plane

Results 43

Figure 4.16: The index of dispersion for the ray casting method with uniform and non-uniform

casting

From these results we can see that using non-uniform casting does appear to slightly improve the

accuracy for the ray casting method. This is because non-uniform casting results in a greater

focus on the sections of the model with more vertices. These sections are likely to contain more

information about the model’s symmetry allowing our algorithm to derive a more accurate

symmetry measure.

4.4.6 Additional variations discussion

Out of the five additional variations tested only polygon reduction was shown to consistently

improve both the runtime and accuracy of our methods. Non-uniform casting did not improve our

runtime but did slightly improve our accuracy. The results of the Hausdorff distance and ray

casting (20x20) methods, with 90% polygon reduction and non-uniform casting, were therefore

used to determine a suitable threshold for reflective symmetry.

4.5 Threshold determination

In order to gain a measure of the accuracy of each method it is necessary to determine a suitable

threshold for the symmetry measure of each method. This threshold value can then be used to

identify reflective symmetry planes in unknown models. If the symmetry measure for a plane is

0

5

10

15

20

25

Ray casting (uniform) Ray casting (non-uniform)

In
d

e
x

o
f

D
is

p
e

rs
io

n

Index of Dispersion (Non-Uniform Casting)

Results 44

above this threshold then we classify it as a plane of global approximate reflective symmetry. For

the ray casting approach model number 8 was removed as an outlier in order to calculate a more

suitable threshold (as previously mentioned). The reasons for this anomaly are discussed in

Section 5.3.

The thresholds calculated are based on the assumption that the cost of a false positive is the

same as the cost of a false negative. These thresholds should therefore be tailored by the

situation and conditions they are applied to. It is important to note that both the Hausdorff

distance and ray casting methods (with 90% polygon reduction) always gave the correct plane of

reflective symmetry a higher value than either of the incorrect planes. This means that if the

user knows that there is a plane of reflective symmetry within a model our methods can

determine this plane with a very high level of certainty.

The range of possible values was determined for each method, between the lowest value for the

correct plane and the highest value of an incorrect plane.

Hausdorff Distance Method:

- Minimum Correct symmetry measure= 32.75

- Maximum Incorrect symmetry measure = 46.70

- Mid-range = 39.7

-

Ray Casting Method:

- Minimum Correct symmetry measure = 27.69

- Maximum Incorrect symmetry measure = 32.69

- Mid-range = 30.19

By using the mid-range value we can now determine the number of planes that would be

misclassified if this was used as the threshold.

Hausdorff Distance Method:

- Number of misclassifications = 3

-

Ray Casting Method:

- Number of misclassifications = 6

The average symmetry measure of these misclassifications should be suitable as a threshold for

each method.

Hausdorff Distance Method:

- Threshold ≈ 40

- Accuracy per plane = 96.88%

Ray Casting Method:

- Threshold ≈ 29

- Accuracy per plane = 94.62% (without model 8)

- Accuracy per plane = 93.75% (with model 8)

Discussion 45

5 Discussion

After investigating these two methods and their possible variations we can see that they are both

effective at detecting reflective symmetry within scanned 3D models. The limitations and outliers

for each method as well as their overall accuracy and runtime are discussed in this section.

5.1 Principal component analysis limitations

Although PCA correctly identified (within a small margin of error) the reflective symmetry plane

for all the scanned models tested, occasionally the symmetry plane for a model is not among

those identified by PCA. This is usually the case for models with only a small level of

approximate symmetry. An example of this is shown in Figure 5.1. The chair shown here has a

large clustering of vertices in the height adjustment lever. This causes PCA to calculate

eigenvectors that are more directed towards this lever, causing the algorithm to misidentify the

ideal plane of reflective symmetry. This issue is very rare however and should not be a problem

on good scans of symmetrical objects (as demonstrated by the models used in these experiments).

Figure 5.1: Model of chair, PCA identifies incorrect hypothesis planes

Discussion 46

5.2 Hausdorff distance method limitations

As mentioned previously, the Hausdorff distance method is less efficient than the ray casting

approach when dealing with larger models. It is also not suitable when the sampling resolution of

the model is inconsistent on either side of the symmetry plane. This problem is largely present

within the results for the Hausdorff distance method without polygon reduction. The most

noticeable case where this occurs is for model 11. For this model the correct plane is given a

symmetry measure lower than both of the other two incorrect planes. A brief analysis of this

model demonstrates why this occurs (see Figure 5.2).

For model 11 the number of vertices on each side of the face differs significantly. This has a very

large effect on the Hausdorff distance approach as it relies on the number of vertices (sampling

resolution) to be roughly equal on each side of the reflective symmetry plane. Polygon reduction

helps to alleviate this problem although the benefit obtained depends very much on the topology

of the original model.

The Hausdorff distance approach also lacks the flexibility to adapt its speed and resolution to the

desired situation, unlike the ray casting approach. It can however be used on models that consist

only of vertices (e.g. point cloud models) as it does not require the mesh’s faces to identify

reflective symmetry.

Figure 5.2: The two halves of model 11, the left half contains far fewer vertices than the right

half

Discussion 47

5.3 Ray casting method limitations

The primary advantage of the ray casting method is that it is typically faster than the Hausdorff

distance approach for models with a large number of vertices, as well as being more

customisable. It does suffer from some limitations however, the most noticeable being its

potential to ignore certain parts of the model when performing its calculations. Whilst the

Hausdorff distance approach uses all the vertices in the model to perform its calculations, the ray

casting method only uses the points at which the cast rays intersect the mesh. The problems this

may cause are demonstrated by looking at the results for model 8. The symmetry measure of this

model is very high for the correct plane as well as one of the incorrect ones. Closer analysis of the

model indicates a likely cause of this abnormally high measure for the incorrect plane (see Figure

5.3).

The correct plane of reflective symmetry has been accurately identified as down the middle of the

model’s front view. However, the hypothesis plane that passes down the middle of the side view

is also given a high symmetry measure by the ray casting method. This is likely a combination of

two factors. Firstly, the majority of the jar, apart from the head and line at the back, has

reflective symmetry with respect to both of these planes. Secondly, whilst the head of the jar was

detected by the algorithm, explaining why the incorrect plane still has a lower symmetry

measure than the correct one, the line at the back is very thin. This means that it is possible that

the rays cast through the front view of the model did not intersect with this part of the object as

much as would be desirable. This means that the algorithm would have little knowledge of this

section of the model and would estimate a symmetry measure for the hypothesis plane without

fully taking account of it. This issue does not occur when using the Hausdorff distance method as

all the mesh’s vertices are taken into account. This property of the ray casting method may in

some cases be considered a benefit, depending on whether the user classifies the line at the back

of the model as noise.

Figure 5.3: Front and side view of model 8

Discussion 48

5.4 Choice of method

The choice of which approach to use depends greatly upon the situation and the types of models

they are to be applied to. The Hausdorff distance method generally gave better accuracy than the

ray casting method after the use of polygon reduction. This is largely due to the fact that this

reduction made the sampling resolution more consistent throughout the model. The ray casting

approach was typically both faster and more customizable than the Hausdorff distance method

and would therefore be suitable to situations where time is a critical factor or if the models are

known to have a very irregular sampling rate. It is also possible to use both methods in

conjunction with each other (e.g. take the average symmetry measure of both methods) for

situations where the accuracy of detection is very important.

5.5 Multiple symmetry planes

In our evaluation we have only considered models with one plane of reflective symmetry. Our

methods also work on any models that contain multiple planes of reflective symmetry. However,

they can only identify at most three hypothesis planes, due to the limitations of PCA. To confirm

that our methods can detect multiple planes of reflective symmetry they were tested on several

models contacting two or more reflective symmetry planes (see Figure 5.4). The results are very

promising, with both methods identifying all planes of reflective symmetry (up to three) correctly,

as well as a 0% false positive rate. This is a very preliminary result and requires further

investigation. However, there is no reason to doubt that this result is incorrect and that our

methods would perform any worse on models with multiple planes of reflective symmetry rather

than just one.

Figure 5.4: Example of model containing two planes of reflective symmetry

Applications 49

5.6 Applications

Although the main focus of this report is on the design of the proposed symmetry detection

algorithms, some of the potential applications of symmetry detection were attempted using our

methods and are briefly described within this section.

5.6.1 Model remeshing

Once a reflective symmetry plane for a model has been identified it can be used to increase the

symmetry of the model for further applications. One of the simplest ways of attempting to make

a model more symmetrical with regard to its symmetry plane is described below.

Firstly, the model is reflected about its symmetry plane to create a new model, referred to as the

reflected model. Each vertex in the original model is then moved to the midpoint between itself

and the closest vertex in the reflected model. Whilst this is a very basic algorithm to accentuate a

model’s symmetry the effects are prominent enough to be observed on our scanned models (see

Figure 5.5). This procedure can also be performed multiple times to increase the level of

symmetry further, but the effect will decrease each time. More advanced algorithms for

symmetry based remeshing could also be implemented (Podolak, Golovinskiy et al. 2007).

(a) (b)

Figure 5.5: Original model (a) and remeshed model (b) for model 32

Applications 50

5.6.2 Shape classification

Many existing methods for shape classification use symmetry as a key feature for distinguishing

models (Kazhdan, Funkhouser et al. 2004). By using symmetry as a means to orientate an

unclassified object it is then possible to identify similar models or shapes, which can then be used

to classify the object. Reflective symmetry has also been shown to be the key factor in shape

perception and viewpoint selection (Reisfeld, Wolfson et al. 1995). Knowing a model’s symmetry

planes can therefore help in selecting an optimum orientation and viewpoint when observing the

model. This concept of model alignment can also be extended to many other applications, such as

database matching or object identification.

5.6.3 Model compression

Another potential benefit of identifying symmetry within a 3D model is that is allows the model

to be stored using less memory. If we know that a model contains a plane of reflective symmetry

then only vertices and faces on one side of this plane need to be stored. Then, when the model is

required, we can simply reflect the stored data about the symmetry plane to give the other half of

the model. This is usually only viable with models that contain perfect symmetry or an extremely

high level of approximate symmetry, as the uncompressed model may appear distorted if the

original level of symmetry was too low.

Conclusion and Future Work 51

6 Conclusion and Future Work

This report provides a detailed description and analysis of two novel methods, as well as several

additional improvements, for global approximate reflective symmetry detection within scanned

3D models. These methods are both fast and robust, identifying planes of reflective symmetry

correctly for the majority of 3D models tested. The first of these methods uses a variation of the

Hausdorff distance to identify reflective symmetry, whilst the second method utilises ray casting

and triangle intersection. When applied to our database of 32 scanned 3D models, the Hausdorff

distance method had an accuracy of 96.88% whilst the ray casting method had an accuracy of

93.75%. In addition, both methods (with suitable variations) always assigned a symmetry

measure to the correct plane that was larger than either of the other two incorrect planes.

However, it is important to note that approximate symmetry is not an absolute property but

rather a measure relative to the model’s own perfect symmetry. Whilst approximate symmetry

detection is difficult to quantify, we are confident that our methods provide a robust and fast

approach for detecting global approximate reflective symmetry in scans of 3D models.

Future work
The area of symmetry detection within 3D models has received a large amount of prior research,

yet there is still a lot of potential for future work. Whilst the methods proposed in this paper only

investigated global reflective symmetry they could be extended to many other types of symmetry.

These could include rotational symmetry, translational symmetry or partial symmetry along

with many others.

The ability of PCA to identify potential planes of symmetry could also be extended to suit

different types of symmetry, as well as being improved to provide better accuracy for the current

system. More sophisticated methods for determining the models centre of mass may also prove

helpful, such as using centralised moments.

.

Whilst the issue of having an irregular sampling resolution can be partially solved by polygon

reduction, the Hausdorff distance method still suffers from having a greater runtime than the

ray casting approach for the majority of scanned models. This is largely due to the need to

compare every vertex point to every other vertex point within the mesh. An investigation into

how this could be improved may provide a faster method which would greatly improve the speed

of our algorithm.

The ray casting method’s main weakness is that it may miss important sections of the model if

the cast rays do not intersect it there. This issue may be reduced if a more sophisticated method

for casting rays was developed, to put even greater focus on the important sections of the model.

Bibliography 52

Bibliography

Alt, H., et al. (1988). "Congruence, similarity and symmetries of geometric objects." Discrete

Comput. Geom. 3(3): 237-256.

Aspert, N., et al. (2002). MESH: measuring errors between surfaces using the Hausdorff

distance. Multimedia and Expo, 2002. ICME '02. Proceedings. 2002 IEEE International

Conference on.

Atallah, M. J. (1985). "On Symmetry Detection." IEEE Transactions on Computers 34(7): 663-

666.

Axenopoulos, A., et al. (2011). 3D model retrieval using accurate pose estimation and view-based

similarity. Proceedings of the 1st ACM International Conference on Multimedia Retrieval.

Trento, Italy, ACM: 1-8.

Barton, M., et al. (2010). "Precise Hausdorff distance computation between polygonal meshes."

Comput. Aided Geom. Des. 27(8): 580-591.

Bentley, J. L. (1975). "Multidimensional binary search trees used for associative searching."

Commun. ACM 18(9): 509-517.

Cailliere, D., et al. (2008). 3D mirror symmetry detection using Hough transform. Image

Processing, 2008. ICIP 2008. 15th IEEE International Conference on.

Catch, D. (2015). "Autodesk 123D Catch | 3d model from photos." from

http://www.123dapp.com/catch.

Cha, Z. and C. Tsuhan (2001). Efficient feature extraction for 2D/3D objects in mesh

representation. Image Processing, 2001. Proceedings. 2001 International Conference on.

Changming, S. and J. Sherrah (1997). "3D symmetry detection using the extended Gaussian

image." Pattern Analysis and Machine Intelligence, IEEE Transactions on 19(2): 164-168.

Choi, J. A. K. a. K. (1995). "Ray Tracing Triangular Meshes." In Western Computer Graphics

Symposium.

Cignoni, P., et al. (1996). Metro: measuring error on simplified surfaces, Centre National de la

Recherche Scientifique.

http://www.123dapp.com/catch

Bibliography 53

Dimitrov, D. (2012). Geometric Applications of Principal Component Analysis, VDM Publishing.

Garland, M. and P. S. Heckbert (1997). Surface simplification using quadric error metrics.

Proceedings of the 24th annual conference on Computer graphics and interactive techniques,

ACM Press/Addison-Wesley Publishing Co.: 209-216.

Guthe, M. a. B., Pavel and Klein, Reinhard (2005). "Fast and accurate Hausdorff distance

calculation between meshes." Journal of WSCG 13(2): 41--48.

Jiang, X.-Y. and H. Bunke (1991). Determination of the Symmetries of Polyhedra and an

Application to Object Recognition. Proceedings of the International Workshop on Computational

Geometry - Methods, Algorithms and Applications, Springer-Verlag: 113-121.

Kazhdan, M., et al. (2004). Symmetry descriptors and 3D shape matching. Proceedings of the

2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. Nice, France, ACM:

115-123.

Li, B., et al. (2014). Efficient view-based 3d reflection symmetry detection. SIGGRAPH Asia 2014

Creative Shape Modeling and Design. Shenzhen, China, ACM: 1-8.

Liu, J. and Y. Liu (2011). Curved reflection symmetry detection with self-validation. Proceedings

of the 10th Asian conference on Computer vision - Volume Part IV. Queenstown, New Zealand,

Springer-Verlag: 102-114.

Liu, Y., Hel-or, H., Kaplan, C. S., and Gool, L. J. V. (2010). "Foundations and Trends in Computer

Graphics and Vision." Computational symmetry in computer vision and computer graphics 5(1-

2): 1-195.

Martinet, l., et al. (2006). "Accurate detection of symmetries in 3D shapes." ACM Trans. Graph.

25(2): 439-464.

Minovic, P., et al. (1993). "Symmetry Identification of a 3-D Object Represented by Octree." IEEE

Trans. Pattern Anal. Mach. Intell. 15(5): 507-514.

Mitra, N. J., et al. (2006). "Partial and approximate symmetry detection for 3D geometry." ACM

Trans. Graph. 25(3): 560-568.

Mitra, N. J., et al. (2007). "Symmetrization." ACM Trans. Graph. 26(3): 63.

Moller, T. and B. Trumbore (1997). "Fast, minimum storage ray-triangle intersection." J. Graph.

Tools 2(1): 21-28.

Bibliography 54

Podolak, J., et al. (2007). Symmetry-enhanced remeshing of surfaces. Proceedings of the fifth

Eurographics symposium on Geometry processing. Barcelona, Spain, Eurographics Association:

235-242.

Podolak, J., et al. (2006). "A planar-reflective symmetry transform for 3D shapes." ACM Trans.

Graph. 25(3): 549-559.

Raviv, D., et al. (2010). "Full and Partial Symmetries of Non-rigid Shapes." Int. J. Comput.

Vision 89(1): 18-39.

Reisfeld, D., et al. (1995). "Context-free attentional operators: the generalized symmetry

transform." Int. J. Comput. Vision 14(2): 119-130.

S. Parry-Barwick, A. B. (1993). "Symmetry analysis and geometric modelling." Digital Image

Computing Techniques and Applications 1: 39-46.

Sawada, T. and Z. Pizlo (2008). Detecting mirror-symmetry of a volumetric shape from its single

2D image. Computer Vision and Pattern Recognition Workshops, 2008. CVPRW '08. IEEE

Computer Society Conference on.

Shilane, P., et al. (2004). The Princeton Shape Benchmark. Proceedings of the Shape Modeling

International 2004. Genova, Italy.

Standford, G. D. (2000). "Search Structures." from http://graphics.stanford.edu/courses/cs368-00-

spring/TA/manuals/CGAL/ref-manual2/SearchStructures/Chapter_main.html.

Straub, R. (2007). "Exact Computation of the Hausdorff Distance between Triangular Meshes."

Proceedings of Eurographics 2007: 17-20.

Vollmer, J., et al. (1999). "Improved Laplacian Smoothing of Noisy Surface Meshes." Computer

Graphics Forum 18(3): 131-138.

Wolter, J., et al. (1985). "Optimal algorithms for symmetry detection in two and three

dimensions." The Visual Computer 1(1): 37-48.

Zabrodsky, H., et al. (1995). "Symmetry as a continuous feature." Pattern Analysis and Machine

Intelligence, IEEE Transactions on 17(12): 1154-1166.

Zou, H. L. and Y. T. Lee (2005). Skewed mirror symmetry detection from a 2D sketch of a 3D

model. Proceedings of the 3rd international conference on Computer graphics and interactive

techniques in Australasia and South East Asia. Dunedin, New Zealand, ACM: 69-7

http://graphics.stanford.edu/courses/cs368-00-spring/TA/manuals/CGAL/ref-manual2/SearchStructures/Chapter_main.html
http://graphics.stanford.edu/courses/cs368-00-spring/TA/manuals/CGAL/ref-manual2/SearchStructures/Chapter_main.html

Appendix

Appendix

Appendix A: Collection of scanned 3D models

Figure A.1: Model 1 Figure A.2: Model 2

 Figure A.3: Model 3 Figure A.4: Model 4

Bibliography 56

Figure A.5: Model 5 Figure A.6: Model 6

Figure A.7: Model 7 Figure A.8: Model 8

 Figure A.9: Model 9 Figure A.10: Model 10

Bibliography 57

Figure A.11: Model 11 Figure A.12: Model 12

Figure A.13: Model 13 Figure A.14: Model 14

Figure A.15: Model 15 Figure A.16: Model 16

Bibliography 58

Figure A.17: Model 17 Figure A.18: Model 18

Figure A.19: Model 19 Figure A.20: Model 20

Figure A.21: Model 21 Figure A.22: Model 22

Bibliography 59

Figure A.23: Model 23 Figure A.24: Model 24

Figure A.25: Model 25 Figure A.26: Model 26

Figure A.27: Model 27 Figure A.28: Model 28

Bibliography 60

Figure A.29: Model 29 Figure A.30: Model 30

Figure A.31: Model 31 Figure A.32: Model 32

Bibliography 61

Bibliography for Appendix A:

Model 1: http://www.123dapp.com/obj-Catch/Mummy-Boston-Museum/2222854

Model 2: http://www.123dapp.com/catch/Alligator-skull-at-the-Skulls-exhibit-at-the-California-

Academy-of-the-Sciences/2616526

Model 3: http://www.123dapp.com/catch/Marcus-Aurelius/2645898

Model 4: http://www.123dapp.com/catch/NASA-EVA-Space-Suit-model-from-Bandai-1-10-

Scale/2671037

Model 5: http://www.123dapp.com/catch/Charles-darwin-statue/2748211

Model 6: http://www.123dapp.com/catch/ram-skull/2792731

Model 7: http://www.123dapp.com/catch/Egyptian-feline/2894209

Model 8: http://www.123dapp.com/obj-Catch/Canopic-jar/1621529

Model 9: http://www.123dapp.com/catch/R2-d2/2955339

Model 10: http://www.123dapp.com/catch/Matti-s-new-L-A-Gear-shoe/3115700

Model 11: http://www.123dapp.com/catch/Portrait-of-Antoni-Gaud-/3358833

Model 12: http://www.123dapp.com/catch/USF-Museum-Visualizations/3382857

Model 13: http://www.123dapp.com/catch/Drake/3389466

Model 14: http://www.123dapp.com/catch/Homer-wood-sculpture-at-Home-Depot/3560340

Model 15: http://www.123dapp.com/catch/Tapir/3567176

Model 16: http://www.123dapp.com/catch/The-Swan-/3582510

Model 17: http://www.123dapp.com/catch/Leopard-seal-skull/3585690

Model 18: http://www.123dapp.com/catch/Sarcophagus/3603386

Model 19: http://www.123dapp.com/catch/Happy-Chinese-goat-year/3657254

Model 20: http://www.123dapp.com/catch/zhangliang1/3778831

Model 21: http://www.123dapp.com/catch/-I-have-the-Power-/3834554

Model 22: http://www.123dapp.com/catch/Hulkbuster-Avengers-Movie/3852196

Model 23: http://www.123dapp.com/catch/beeld-3-Mooniq/3960506

Model 24: http://www.123dapp.com/catch/bumblebee-transformers-deluxe-class/4114483

Model 25: http://www.123dapp.com/catch/Dad/4125292

Model 26: http://www.123dapp.com/catch/Buddha-Statue/4136278

Model 27: http://www.123dapp.com/catch/Surprise-/4145623

Model 28: http://www.123dapp.com/catch/Turtle/4161963

Model 29: http://www.123dapp.com/catch/Terminator-Skull/4163065

Model 30: http://www.123dapp.com/catch/Naoya/4164048

Model 31: http://www.123dapp.com/catch/einstein/4164243

Model 32: http://www.123dapp.com/catch/toy-bird/4181176

http://www.123dapp.com/obj-Catch/Mummy-Boston-Museum/2222854
http://www.123dapp.com/catch/Alligator-skull-at-the-Skulls-exhibit-at-the-California-Academy-of-the-Sciences/2616526
http://www.123dapp.com/catch/Alligator-skull-at-the-Skulls-exhibit-at-the-California-Academy-of-the-Sciences/2616526
http://www.123dapp.com/catch/Marcus-Aurelius/2645898
http://www.123dapp.com/catch/NASA-EVA-Space-Suit-model-from-Bandai-1-10-Scale/2671037
http://www.123dapp.com/catch/NASA-EVA-Space-Suit-model-from-Bandai-1-10-Scale/2671037
http://www.123dapp.com/catch/Charles-darwin-statue/2748211
http://www.123dapp.com/catch/ram-skull/2792731
http://www.123dapp.com/catch/Egyptian-feline/2894209
http://www.123dapp.com/obj-Catch/Canopic-jar/1621529
http://www.123dapp.com/catch/R2-d2/2955339
http://www.123dapp.com/catch/Matti-s-new-L-A-Gear-shoe/3115700
http://www.123dapp.com/catch/Portrait-of-Antoni-Gaud-/3358833
http://www.123dapp.com/catch/USF-Museum-Visualizations/3382857
http://www.123dapp.com/catch/Drake/3389466
http://www.123dapp.com/catch/Homer-wood-sculpture-at-Home-Depot/3560340
http://www.123dapp.com/catch/Tapir/3567176
http://www.123dapp.com/catch/The-Swan-/3582510
http://www.123dapp.com/catch/Leopard-seal-skull/3585690
http://www.123dapp.com/catch/Sarcophagus/3603386
http://www.123dapp.com/catch/Happy-Chinese-goat-year/3657254
http://www.123dapp.com/catch/zhangliang1/3778831
http://www.123dapp.com/catch/-I-have-the-Power-/3834554
http://www.123dapp.com/catch/Hulkbuster-Avengers-Movie/3852196
http://www.123dapp.com/catch/beeld-3-Mooniq/3960506
http://www.123dapp.com/catch/bumblebee-transformers-deluxe-class/4114483
http://www.123dapp.com/catch/Dad/4125292
http://www.123dapp.com/catch/Buddha-Statue/4136278
http://www.123dapp.com/catch/Surprise-/4145623
http://www.123dapp.com/catch/Turtle/4161963
http://www.123dapp.com/catch/Terminator-Skull/4163065
http://www.123dapp.com/catch/Naoya/4164048
http://www.123dapp.com/catch/einstein/4164243
http://www.123dapp.com/catch/toy-bird/4181176

Bibliography 62

Appendix B: Additional graphs for results

Figure B.1: The reflective symmetry measure given to each model’s hypothesis planes using the

ray casting based method with a 5x5 grid of rays

Figure B.2: The reflective symmetry measure given to each model’s hypothesis planes using the

ray casting based method with a 10x10 grid of rays

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Ray Casting Symmetry Measure (25 Rays)

Correct Plane

Incorrect Plane

Incorrect Plane

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Ray Casting Symmetry Measure (100 Rays)

Correct Plane

Incorrect Plane

Incorrect Plane

Bibliography 63

Figure B.3: The reflective symmetry measure given to each model’s hypothesis planes using the

ray casting based method with a 50x50 grid of rays

Figure B.4: The relation between vertex number and face number for each of the scanned models

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Ray Casting Symmetry Measure (2500 Rays)

Correct Plane

Incorrect Plane

Incorrect Plane

0

50000

100000

150000

200000

250000

300000

350000

400000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Fa
ce

 N
u

m
b

e
r

Vertex Number

Vertex Number vs. Face Number

Bibliography 64

Figure B.5: The total runtime for each of the faster algorithms relative to the number of vertices

in the model for the set of scanned models

Figure B.6: The total runtime for each of the slower algorithms relative to the number of vertices

in the model for the set of scanned models

0

2

4

6

8

10

12

14

16

0 50000 100000 150000 200000

O
ve

ra
ll

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Vertices

Vertex Number vs. Runtime

Ray (25)

Ray (100)

Ray (400)

0

20

40

60

80

100

120

140

160

180

200

0 50000 100000 150000 200000

O
ve

ra
ll

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of Vertices

Vertex Number vs. Runtime

Hausdorff

Ray (2500)

Bibliography 65

Figure B.7: The reflective symmetry measure given to each model’s hypothesis planes using the

Hausdorff distance based method after the model has had 50% of its polygons removed

Figure B.8: The reflective symmetry measure given to each model’s hypothesis planes using the

ray casting based method after the model has had 50% of its polygons removed

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Hausdorff Distance Symmetry Measure (50% Reduction)

Correct Plane

Incorrect Plane

Incorrect Plane

0

50

100

150

200

250

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Ray Casting Symmetry Measure (50% Reduction)

Correct Plane

Incorrect Plane

Incorrect Plane

Bibliography 66

Figure B.9: The reflective symmetry measure given to each model’s hypothesis planes using the

Hausdorff distance based method after the model has been reduced and smoothed

Figure B.10: The reflective symmetry measure given to each model’s hypothesis planes using the

ray casting based method after the model has been reduced and smoothed

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Hausdorff Distance Symmetry Measure (Smoothing)

Correct Plane

Incorrect Plane

Incorrect Plane

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Sy
m

m
e

tr
y

M
e

as
u

re

Model Number

Ray Casting Symmetry Measure (Smoothing)

Correct Plane

Incorrect Plane

Incorrect Plane

