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Abstract 

The concept of detecting symmetry within 3D models has received an extensive amount of 

research within the past decade. Numerous algorithms have been proposed to identify reflective 

symmetry within 3D meshes and to extract a quantitative measure for the model’s level of 

symmetry. Much of this existing work focuses on identifying symmetry in noiseless 3D models 

with most methods unable to work effectively on models distorted by noise, such as those 

commonly obtained when scanning objects in the real world. This report details the design and 

implementation of two robust and fast algorithms, which can be used on a wide variety of models 

to identify global approximate reflective symmetry. These proposed methods are also able to 

identify likely planes of symmetry in models that have been distorted with noise or contain minor 

imperfections, making them ideal for scanned models of real world objects. The hypothesis planes 

are determined by principal component analysis, after which the proposed algorithms give each 

plane a numerical value corresponding to its likelihood of being a plane of global approximate 

reflective symmetry. The first algorithm uses the Hausdorff distance between vertices to 

estimate symmetry, whilst the second uses an approach based on ray casting. We estimate the 

accuracy of our proposed methods to be 96.88% for the Hausdorff distance method and 93.75% for 

the ray casting method. 
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1 Introduction 

Symmetry is a mathematical concept that exists in many man-made objects, as well as being 

widely prevalent in nature (Liu 2010). These objects can be represented digitally as 3D geometric 

models, which are typically encoded as a mesh created from small polygons, usually triangles, 

with little to no information about their higher level structure. Determining additional properties 

of a model, including its global reflective symmetry, is an important task within computer 

graphics and computer vision. Many existing applications benefit greatly from the ability to 

identify and extract symmetry, such as 3D model retrieval, geometric problem solving, object 

recognition, robotic assembly, procedural modelling, segmentation and remeshing. 

 

Many of the current methods for identifying global reflective symmetry planes suffer from a 

range of problems. These include the inability to detect approximate symmetry within complex 

geometry and restrictions on the model’s structure, such as being convex or fully connected. 

 

The aim of this research is to develop simple, accurate and fast algorithms that can be used to 

detect likely planes of global approximate reflective symmetry within scanned models of 3D 

objects, which are often distorted by noise. By first identifying potential planes of symmetry 

within the model, the algorithms calculate a measure for how likely each hypothesis plane is to 

be a plane of reflective symmetry. This value is then compared against a threshold to determine 

whether it is large enough for the given model. 

 

Likely planes of reflective symmetry are determined using principal component analysis (PCA) 

and two proposed methods for measuring the planes likelihood of symmetry have been developed. 

The first method utilises the Hausdorff distance between vertices on either side of the hypothesis 

plane. The second method utilises ray casting to determine the deviation between mesh 

intersection points on either side of the hypothesis plane. Several variations to each method 

which improve their accuracy and runtime are also investigated. 

 

 

1.1 Report outline 

This report begins with an explanation about some of the key concepts within symmetry, followed 

by an overview of relevant prior work, including research done on both global and partial 

symmetry detection. Section 3 details the mathematical design and implementation of our 

proposed methods. Section 4 demonstrates how we have evaluated our proposed algorithms and 

presents the final results. Section 5 contains a discussion of these results and a comparison of the 

proposed algorithm’s strengths and weaknesses, as well as a brief look into some of the 

applications that 3D symmetry detection has. Section 6 presents our final conclusion and outlines 

possible future work which could be conducted to improve our methods.  
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2 Background and Related Work 

2.1 Key concepts within symmetry 

There are many different categories of symmetry that any 2D image or 3D model may possess. 

These can be divided into basic types of symmetry (symmetry that most people are familiar with) 

and complex types of symmetry (symmetry that is less commonly known). 

2.1.1 Basic types of symmetry 

Reflectional symmetry 
Reflectional symmetry, mirror symmetry or bilateral symmetry represents symmetry due to 

reflection (see Figures 2.1 and 2.3). In 3D objects there is a plane about which reflection takes 

place and for 2D images this is a vector. A plane of symmetry for a 3D object is any plane such 

that if the object was reflected about this there would be no visible change. A plane of reflective 

symmetry will always go through the centre of the object. This is the type of symmetry that our 

method is attempting to detect. 

 

Rotational symmetry 
Rotational symmetry or radial symmetry represents symmetry due to rotation (see Figures 2.2 

and 2.3). In 3D objects there is a vector around which rotation takes place and for 2D images 

there is a point. A 3D object is said to have a vector of rotational symmetry if it can be rotated a 

certain amount around this vector and still look the same. The objective of rotational symmetry 

algorithms is to determine the direction and amount of rotational symmetry the object possesses. 

 

Translational symmetry 
Translational symmetry represents symmetry due to translation. In 3D objects the translation is  

 

 

 

 

 

 

 

 

 

     Figure 2.1: Shape with       Figure 2.2: Shape with                  Figure 2.3: Shape with 

        reflective symmetry                  rotational symmetry           reflective and rotational symmetry 
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given as a vector in three dimensions (x, y, z) and for 2D images this is given in two dimensions 

(x, y). A 3D object is said to have translational symmetry if it is comprised of identical elements 

that can be separated using planes. 

 

2.1.2 Complex types of symmetry 

Global symmetry 
An object that contains some form of symmetry throughout the entire model is said to contain 

global symmetry (see Figure 2.4). This is in contrast to the idea of an object having partial 

symmetry. 

 

Partial symmetry 
An object that does not contain some form of symmetry throughout the entire model may still 

possess partial symmetry. This occurs when some part of the model possesses a form of 

symmetry but another part of it does not. For example, this occurs in Figure 2.5 where the 

horse’s legs are in different positions on either side of its body. The rest of the model apart from 

the legs is symmetrical so the model is said to have partial symmetry. 

 

Approximate symmetry 
For digital models created by a human it is easy to say whether an object has symmetry or not. 

However, it is extremely unlikely for a scanned real world object to contain perfect symmetry of 

the types discussed so far. It is more likely that an object would have approximate symmetry, 

where the symmetry is not mathematically exact but is close enough that we could identify it as 

such. A good example of this would be a person’s head. For most people the two halves of their 

head are not identical but are close enough that we would state that there was approximate 

symmetry. For methods which attempt to detect approximate symmetry, this is usually achieved 

by calculating a numerical value representing the deviation between the actual and ideal 

symmetry of the model. If this value is small enough then the model is said to have approximate 

symmetry, although the threshold used for this decision can vary significantly. 

 

 

 

     

 

 

 

 

 

 

               Figure 2.4: Model that contains            Figure 2.5: Model that contains 

                  global reflective symmetry      partial reflective symmetry 
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2.2 Early work within symmetry detection 

2.2.1 2D symmetry detection 

Early symmetry detection algorithms were only concerned with identifying exact symmetries 

within 2D images represented as a set of planar points. The most common way of achieving this 

is by reducing the 2D symmetry problem to a 1D pattern matching problem which works in O(n 

log n) time (Atallah 1985). This approach can be adapted and improved further, with two notable 

extensions being the ability to detect partial symmetry within a 2D image (S. Parry-Barwick 

1993) and the ability to detect approximate symmetry by utilising a hierarchy that defines 

symmetry as a continuous feature (Zabrodsky, Peleg et al. 1995). However, both of these 

additions are very computationally expensive and rely on the algorithm’s ability to establish 

correspondence between points within the image. 

 

2.2.2 Primitive 3D symmetry detection 

The original idea of reducing 2D symmetry detection to a 1D pattern matching problem can be 

expanded to detect symmetry in 3D point sets (Wolter, Woo et al. 1985) as well as the ability to 

detect approximate symmetries using similar principles (Alt, Mehlhorn et al. 1988). 

 

2.3 Advanced methods for 3D symmetry detection 

After this initial research had constructed the basis for more advanced 3D model symmetry 

detection algorithms, many improvements and variations were proposed in subsequent years. A 

comparison of these previous methods is presented at the end of this section (see Table 2.1). 

 

2.3.1 Global symmetry detection 

Identifying automorphisms of planar triply connected graphs 
One of the earliest methods for detecting rotational symmetry in 3D models creates a graph-

based representation of the solid object (Jiang and Bunke 1991). Hypothetical symmetry axes are 

then extracted, by finding automorphisms of the graph and a rotation matrix. This method can 

determine global and approximate symmetry for rotation. This method has many downsides 

however, as it is highly dependent on the topology of the model, requiring the mesh to be fully 

connected in order to generate the corresponding graph. It is also very susceptible to noise or 

other small imperfections within the object’s geometry. The algorithm used has quadratic 

complexity and requires O(m2) time, where m represents the number of edges in the object. This 

means that whilst this method is simple to implement, it suffers from many geometry 

restrictions and computational inefficiency.  
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Using Octree representation to identify symmetry 
This method creates an octree representation of the model which is then traced to identify likely 

planes of symmetry (Minovic, Ishikawa et al. 1993). This was one of the first papers to propose 

the use of the principle axis transform to help orientate the object before attempting to detect 

symmetry. This allows the input object to be in an arbitrary position and rotation. Many 

subsequent algorithms used this or similar methods to first orientate the object before identifying 

potential symmetry planes. This method can determine global and approximate symmetry for 

rotation and reflection. However, this method does become more computationally complex for 

larger models and has been shown to be sensitive to noise.  

 

Extended Gaussian image of model 
Another approach to identifying symmetry in 3D models centres around the use of the extended 

Gaussian image of a model (Changming and Sherrah 1997). This method works by creating a 

tessellated sphere of hexagons around the object, with the same centre of mass as the mesh. The 

algorithm then iterates though each face of the mesh and assigns it to the hexagon which 

intersects with the face’s normal vector, creating an orientation histogram for the model (see 

Figure 2.6). The number of hexagons used to create the tessellated sphere can be altered based 

on the desired level of accuracy. This method can determine global and approximate symmetry 

for rotation and reflection. The main problem with this method is how it responds to small 

imperfections in the model. While these typically only cause minor changes to the positions of the 

model’s faces, they can have a major influence on the normal of the faces. This would make this 

method very impractical for use on scanned 3D models, as these are frequently subject to noise 

distortions. 

 

 

                

     (a)           (b) 

Figure 2.6: Simple mesh model of a human head (a) and corresponding orientation histogram (b) 

(Changming and Sherrah 1997) 
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Spherical harmonic coefficients of generalised moments 
This method detects global symmetries of 3D models by analysing the extrema and spherical 

harmonic coefficients of generalised moments (Martinet, Soler et al. 2006). This method utilises 

the fact that the even order moments contain the same symmetries as the model. The generalised 

moments are not computed directly; instead their spherical harmonic coefficients are computed 

using an integral expression. After this, the extrema of these functions are used to identify 

candidates for symmetries, which are then checked against the original shape using an 

appropriate geometric measure. When compared to the previous algorithms, this method 

computes a deterministically small number of surface integrals whilst still providing fairly 

accurate results. This method can determine global and approximate symmetry for rotation and 

reflection. Whilst this method can be shown to detect reflective symmetry within scanned 3D 

models it was not specifically designed for this purpose. Because of this, the method is very 

inaccurate when applied to scanned models containing large holes or other distortions (scans 

must be have very high resolution and accuracy). It is also far more complex than most other 

methods, making it difficult to integrate easily into other applications.  

 

2.3.2 Partial symmetry detection 

Gaussian Euclidean distance transform 
By using the Gaussian Euclidean distance transform it is possible to determine a shape 

descriptor similarity, detailing the distance between the shape descriptor of an object and its 

perfectly symmetrical equivalent. This can be used to determine a measure of a model’s 

symmetry with respect to every axis passing through the centre of mass (Kazhdan, Funkhouser 

et al. 2004). This method can determine global and approximate symmetry for rotation and 

reflection. This method can also be used to detect partial symmetry but relies on the algorithm’s 

ability to find suitable pairs of vertices within the model (Podolak, Shilane et al. 2006). This 

makes the method good for shape identification but very costly for accurate results, as the 

algorithm has to compute the surface integration for each of the sampled directions.  

 

Stochastic clustering to find pairs of vertex groups 
By matching local shape signatures, followed by stochastic clustering in transformation space, it 

is possible to extract potential symmetry planes from a 3D model (Mitra, Guibas et al. 2006). The 

first part of this method works by computing simple descriptors at a set of chosen locations on the 

shape. These local descriptors are then used to pair up groups of vertices to form clusters that 

provide information about the symmetry relation between them. The second part of this method 

extracts the significant modes of this mass distribution and uses this to check the spatial 

consistency, verifying whether symmetry is present. This algorithm is similar in design to 

another method which uses a variation of the Hough transform to extract features (Cailliere, 

Denis et al. 2008). These methods can determine global, partial and approximate symmetry for 

rotation and reflection. The main problem with these methods is that they rely on the ability of 

the algorithm to identify suitable pairs of vertices within the model, which may not always be 

possible. 
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Using 2D depth images 

If a 3D model has been orientated, either manually or by using PCA (or a similar method), it is 

possible to get a quick estimation of symmetry using 2D depth images. This method is much 

faster than any of the previous approaches but suffers from being far less accurate. After taking a 

2D depth image of each side of the orientated model, the image is analysed to determine if any 

symmetry is likely to be present (using a 2D symmetry detection algorithm). Whilst a symmetry 

detection method of this nature is not mathematically valid, it can provide a reasonably accurate 

estimation of symmetry (Axenopoulos, Litos et al. 2011). These methods are typically only used 

for real-time symmetry detection, as their accuracy is much less than what would normally be 

desired.  

 

2.3.3 Additional detection methods 

This section describes several other symmetry detection algorithms that are designed for specific 

situations or requirements. 

Detecting 3D symmetry from 2D images 
All of the methods mentioned so far rely on the model to be fully accessible and manipulable by 

the algorithm. It is sometimes the case however, that symmetry must be estimated without the 

objects full mesh being available. Instead, a single or collection of 2D images of the object is 

provided, from which the symmetry of the original 3D object is estimated. This can be achieved 

either from a sketch of the model (Zou and Lee 2005), a single 2D image of a volumetric shape 

(Sawada and Pizlo 2008) or by using a view-based approach (Li, Johan et al. 2014). These 

methods have demonstrated reasonable accuracy under the right circumstances and are mainly 

used to detect global reflective symmetry in specialised situations. 

 

Curved reflective symmetry detection 
There are also some algorithms that attempt to detect, or correct, curved reflective symmetry 

within 3D models. These methods are used when an object contains reflective symmetry about a 

curved plane rather than a straight one. This symmetry is detected by identifying matching 

sections of partial symmetry and then connecting all these planes together (Liu and Liu 2011). 

The position of the objects vertices can then be adjusted so that their corresponding planes are 

parallel, giving the effect of symmetrizing the model (see Figure 2.7). (Mitra, Guibas et al. 2007). 

 

Symmetries of non-rigid shapes 
By extending the concepts of intrinsic symmetry for a non-symmetric model, it is possible to 

detect symmetry within a non-rigid shape (Raviv, Bronstein et al. 2010). Similar to the previous 

method of curved symmetry detection, symmetry within a deformed model can be identified by 

connecting many small planes of partial symmetry. From this the algorithm can then decide 

whether the model may possess intrinsic or extrinsic symmetry (see Figure 2.8). 
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2.4 Summary 

While there are many previous methods for symmetry detection they contain several limitations 

which make them ineffective on scanned 3D models, including being topology dependent, 

sensitive to noise and requiring vertex pairings. Our proposed algorithms are designed 

specifically for these types of models, with the goal of providing a robust and fast means of 

detecting global approximate reflective symmetry. The next chapter details the design and 

implementation of our algorithms. 

 

 

 
(a)       (b) 

Figure 2.7: Model that contains curved reflective symmetry (a)                                                      

which has then been symmetrized (b) (Mitra, Guibas et al. 2007) 

 

      

(a)       (b) 

Figure 2.8: Model that contains extrinsic symmetry (a);                                                             

model that contains intrinsic symmetry (b) (Raviv, Bronstein et al. 2010) 
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Reference Reflection Rotation Global Approximate Partial Designed for 

scanned models 
(Alt, Mehlhorn et al. 

1988)       
(Axenopoulos, Litos et 

al. 2011)       
(Cailliere, Denis et al. 

2008)       
(Changming and 

Sherrah 1997)       
(Jiang and Bunke 

1991)       
(Kazhdan, Funkhouser 

et al. 2004)       
(Martinet, Soler et al. 

2006)       
(Minovic, Ishikawa et 

al. 1993)       
(Mitra, Guibas et al. 

2006)       
(Podolak, Shilane et al. 

2006)       
(Wolter, Woo et al. 

1985)       
Proposed method 

      
 

Table 2.1: General comparison of features between the most common 3D symmetry detection methods and our proposed method
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3 Design and Implementation 

Our algorithms for global reflective symmetry detection both have two distinct processes. The 

first process involves determining potential planes of reflective symmetry (hypothesis planes) by 

using principal component analysis (PCA). The second process involves calculating a symmetry 

measure for each of the hypothesis planes based on the level of reflective symmetry the model 

has with respect to it. Our two algorithms differ in this second process. One uses the Hausdorff 

distance and the other uses ray casting. A flowchart of the entire program is provided at the end 

of this section (see Figure 3.14). 

 

 

3.1 Identifying hypothesis planes 

Using PCA to orientate a model before attempting symmetry detection is a technique that has 

been implemented in many previous methods and has been shown to work effectively at 

determining potential planes of reflective symmetry (Dimitrov 2012). For this reason it was 

selected as the method by which to derive the hypothesis planes. In order to perform PCA on a 

model it is necessary to first estimate the model’s centre of mass 

 

3.1.1. Centre of mass approximation 

There are two main methods for determining the centre of mass 𝑴 for a model constructed using 

the set of vertices 𝑽. 

The first method is to use the mean position of each vertex within the mesh. 

𝑴 =
𝟏

|𝑽|
∑𝒗

𝒗∈𝑽

 

The second method is to use the centre of the mesh’s bounding box. 

𝑴 =
𝒎𝒂𝒙
𝒗∈𝑽

𝑽 −𝒎𝒊𝒏
𝒗∈𝑽

𝑽

𝟐
+𝒎𝒊𝒏

𝒗∈𝑽
𝑽 

Although both of these methods have limitations, they are each suited to different types of 

models. The first method is more suited to models that may potentially contain noise or outliers. 

The second method is more suited to models where the vertices are not spread evenly throughout 

the mesh. In the case of scanned 3D models it is more often the case that the data is noisy or 

contains outliers, meaning that the first method would generally be the more suitable choice. 
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3.1.2. Principal component analysis 

PCA is a method of determining, for a given dataset, the direction along which the data varies the 

most. The result of performing PCA on a 3D collection of points is two eigenvectors representing 

the principal components (see Figure 3.1). This is achieved through the concept of dimensionality 

reduction, where the number of dimensions 𝒑 within a dataset 𝑿 is reduced to a desired value 𝑳. 

Firstly, the data is arranged as a set of 𝒏 vectors and placed in a matrix 𝑿 of dimensions 𝒏 × 𝒑. 

The deviations from the centre of mass are then calculated by subtracting 𝑴 from each row of the 

data matrix 𝑿. This is then stored in a matrix 𝑩 of size 𝒏 × 𝒑. 

𝒉[𝒊] = 𝟏, 𝒊 = 𝟏…𝒏 

𝑩 = 𝑿 − 𝒉𝒖𝑻 

The covariance matrix 𝑪 is then calculated from the outer product of matrix 𝑩 with itself. 

𝑪 =
𝟏

𝒏 − 𝟏
𝑩∗𝑩 

(Where ∗ is the conjugate transpose operator) 

Lastly, the matrix 𝑽 of eigenvectors that diagonalizes the covariance matrix 𝑪 is calculated using 

the diagonal matrix 𝑫 of eigenvalues of 𝑪. 

𝑽−𝟏𝑪𝑽 = 𝑫 

𝑫 is a 𝒑 × 𝒑 diagonal matrix, where 𝝀𝒌 represents the 𝒌-th eigenvalue of the covariance matrix 𝑪. 

𝑫[𝒌, 𝒍] = {
𝝀𝒌, 𝒌 = 𝟏
𝟎, 𝒌 ≠ 𝟏

 

In effect, this allows us to determine the direction of maximum variation in the mesh and the 

direction of maximum variance perpendicular to this. These two vectors together form the 

principle components, from which the hypothesis planes for reflective symmetry can be derived. 

 

 

Figure 3.1: Example of PCA in 2D space 
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3.1.3. Hypothesis symmetry planes 

Using the two eigenvectors calculated from PCA we then identify three hypothesis planes, 

defined as follows: 

- Plane 1: The plane containing both PCA eigenvectors. 

- Plane 2: Formed by creating a plane along the first PCA eigenvector and which is also 

orthogonal to Plane 1. 

- Plane 3: Formed by creating a plane along the second PCA eigenvector and which is also 

orthogonal to Plane 1. 

In many symmetrical models, simply using the two PCA eigenvectors to form a plane is a good 

method for finding the plane of reflective symmetry, yet in some models this is not the case. For 

the model in Figure 3.2 for example, the two eigenvectors found point in the correct directions to 

identify the plane of reflective symmetry. For the model in Figure 3.3 however, one of the 

eigenvectors points in an incorrect direction. This is because the low flat body type of the fly 

means that there is greater variation from left to right rather than top to bottom. For this reason 

we also calculate the two planes which are orthogonal to the first plane but parallel to one of the 

eigenvectors. This has been shown through experimentation to identify reflective symmetry in a 

large number of 3D models (Dimitrov 2012). 

With the hypothesis planes identified, it is necessary to calculate a symmetry measure for 

determining whether or not each of the hypothesis planes is also a plane of reflective symmetry. 

Two alternative methods for calculating this measure are proposed in the following sections. 

 

 

        
Figure 3.2: PCA eigenvalues   Figure 3.3: PCA eigenvalues 

 for cow mesh     for fly mesh 
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3.2 Hausdorff distance approach 

The first method for calculating a symmetry measure uses a variation of the Hausdorff distance 

algorithm to estimate a symmetry measure for each of the model’s hypothesis planes. 

 

3.2.1. Mesh split and reflection 

The mesh is first split into two smaller meshes using the hypothesis plane that is being tested. 

This is done by iterating through each vertex 𝒗𝒊 within the mesh and allocating it to one of two 

sets 𝑺𝒂 or 𝑺𝒃 based on its position relative to the hypothesis plane 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 = 𝟎. 

𝒗𝒊 ∈ {
𝑺𝒂    𝒊𝒇  𝒂𝒗𝒙 + 𝒃𝒗𝒚 + 𝒄𝒗𝒛 < 𝟎

𝑺𝒃    𝒊𝒇  𝒂𝒗𝒙 + 𝒃𝒗𝒚 + 𝒄𝒗𝒛 > 𝟎
 

(Note that if 𝑎𝑣𝑥 + 𝑏𝑣𝑦 + 𝑐𝑣𝑧 is equal to zero then the vertex lies on the hypothesis plane and is 

not an element of either set) 

If the hypothesis plane is a global reflective symmetry plane then each of the meshes created 

using these new vertex sets will be mirror images of each other. In order to determine whether 

this is the case, the vertices within set 𝑺𝒂 are reflected about the hypothesis plane.  

𝒗𝒙 = (𝟏 − 𝟐𝒂
𝟐)𝒗𝒙 − (𝟐𝒂𝒃)𝒗𝒚 − (𝟐𝒂𝒄)𝒗𝒛 

𝒗𝒚 = (𝟏 − 𝟐𝒃
𝟐)𝒗𝒚 − (𝟐𝒂𝒃)𝒗𝒙 − (𝟐𝒃𝒄)𝒗𝒛 

𝒗𝒛 = (𝟏 − 𝟐𝒄𝟐)𝒗𝒛 − (𝟐𝒂𝒄)𝒗𝒙 − (𝟐𝒃𝒄)𝒗𝒚 

If the two meshes are now approximately the same it can be assumed that the hypothesis plane 

is a plane of reflective symmetry. 

 

3.2.2. Hausdorff distance symmetry measure 

The Hausdorff distance is a similarity measure that is predominantly used to calculate the error 

created by simplifying a mesh, but it can easily be modified for our purpose here. The Hausdorff 

distance 𝒅𝑯 is defined between two non-empty datasets 𝑿 and 𝒀. 

𝒅𝑯(𝑿, 𝒀) = 𝒎𝒂𝒙 {𝒎𝒂𝒙
𝒙∈𝑿

 𝒎𝒊𝒏
𝒚∈𝒀

 𝒅(𝒙, 𝒚) ,  𝒎𝒂𝒙
𝒚∈𝒀

 𝒎𝒊𝒏
𝒙∈𝑿

 𝒅(𝒙, 𝒚)} 

In context, this is calculated by taking each vertex within a mesh and finding the minimum 

distance between it and any vertex on the other mesh. The same is then done with the meshes 

swapped and the maximum of these minimal distances is defined as the Hausdorff distance 

(Aspert, Santa-Cruz et al. 2002, Guthe 2005). Whilst this is good for measuring error during 

simplification (Cignoni, Rocchini et al. 1996) it is not entirely effective for our purposes. This is 

mainly because it returns the maximum deviation between the meshes, meaning that if our 

model is perfectly symmetrical apart from a single outlier then this would result in a large 
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Hausdorff distance (see Figure 3.4). Instead, we are likely to get a better result if the average 

distance is used as the similarity measure, rather than the maximum.  

𝒅𝑯(𝑿, 𝒀) = 𝒎𝒂𝒙{
𝟏

|𝑿|
∑  𝒎𝒊𝒏

𝒚∈𝒀
 𝒅(𝒙, 𝒚)

𝒙∈𝑿

,
𝟏

|𝒀|
∑  𝒎𝒊𝒏

𝒙∈𝑿
 𝒅(𝒙, 𝒚)

𝒚∈𝒀

} 

One disadvantage of this new approach is that it increases the time required to sample the mesh, 

as we cannot apply any vertex culling or other traditional improvements to increase the 

algorithm’s efficiency (Straub 2007, Barton, Hanniel et al. 2010). 

In context, this new method is performed by taking each vertex within one of the meshes and 

recording the shortest distance between it and any vertex on the other mesh. We then compute 

the average of all these distances. The same is then done but with the meshes swapped and the 

maximum of these two averages is taken as the total deviation. The inverse of this deviation can 

then be used as a similarity measure. This level of similarity between these two meshes can also 

be used to represent a measure of symmetry 𝑺 that the hypothesis plane has with respect to the 

original model. If this value is above a pre-determined threshold, then we conclude that the 

hypothesis plane is likely to be a plane of reflective symmetry. 

 

3.2.3. Potential limitations 

Whilst this method is simple to understand and implement, it suffers from being extremely 

inefficient and overly reliant on the sampling resolution of the model. This algorithm can 

potentially require exponential time, meaning that this method is impractical for models where 

the number of vertices is very high. Scanned 3D models can potentially contain millions of 

vertices, necessitating the creation of an alternative method for detecting symmetry which avoids 

these problems.  

 

 

Figure 3.4: Hausdorff distance calculation 

 𝒎𝒂𝒙
𝒚∈𝒀

 𝒎𝒊𝒏
𝒙∈𝑿

 𝒅(𝒙, 𝒚) 

𝒎𝒂𝒙
𝒙∈𝑿

 𝒎𝒊𝒏
𝒚∈𝒀

 𝒅(𝒙, 𝒚) 
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3.3 Ray casting approach 

The second method for calculating a symmetry measure attempts to avoid the problem of 

sampling rate dependence by using ray casting to create a set of mesh intersection points. 

 

3.3.1. Orientate plane and mesh 

In order to simplify the ray casting algorithm, the model is first rotated so that the hypothesis 

plane aligns with the plane created by the x and y axis in world space. Firstly, the angle 𝜽 and 

direction 𝑫 by which to rotate the plane 𝑷 are calculated. 

𝑫𝒐𝒕(𝑨,𝑩) = 𝑨𝒙𝑩𝒙 + 𝑨𝒚𝑩𝒚 + 𝑨𝒛𝑩𝒛  

𝑪𝒓𝒐𝒔𝒔(𝑨,𝑩) = 〈𝑨𝒚𝑩𝒛 − 𝑨𝒛𝑩𝒚 ,  𝑨𝒛𝑩𝒙 − 𝑨𝒙𝑩𝒛 ,  𝑨𝒙𝑩𝒚 − 𝑨𝒚𝑩𝒙〉 

𝜽 = 𝐜𝐨𝐬−𝟏(𝑫𝒐𝒕(𝑷, 〈𝟎, 𝟎, 𝟏〉)) 

𝑫 = 𝑪𝒓𝒐𝒔𝒔(𝑷, 〈𝟎, 𝟎, 𝟏〉) 

For every vertex 𝑽 within the mesh, a new position is then determined. 

𝑽𝒙 = (𝑫𝒙
𝟐(𝟏 − 𝐜𝐨𝐬𝜽) + 𝐜𝐨𝐬 𝜽)𝑽𝒙 + (𝑫𝒙𝑫𝒚(𝟏 − 𝐜𝐨𝐬𝜽) − 𝑫𝒛 𝐬𝐢𝐧 𝜽)𝑽𝒚

+ (𝑫𝒙𝑫𝒛(𝟏 − 𝐜𝐨𝐬𝜽) + 𝑫𝒚 𝐬𝐢𝐧𝜽)𝑽𝒛 

𝑽𝒚 = (𝑫𝒙𝑫𝒚(𝟏 − 𝐜𝐨𝐬𝜽) + 𝑫𝒛 𝐬𝐢𝐧 𝜽)𝑽𝒙 + (𝑫𝒚
𝟐(𝟏 − 𝐜𝐨𝐬𝜽) + 𝐜𝐨𝐬 𝜽)𝑽𝒚

+ (𝑫𝒚𝑫𝒛(𝟏 − 𝐜𝐨𝐬𝜽) − 𝑫𝒙 𝐬𝐢𝐧 𝜽)𝑽𝒛 

𝑽𝒛 = (𝑫𝒙𝑫𝒛(𝟏 − 𝐜𝐨𝐬 𝜽) − 𝑫𝒚 𝐬𝐢𝐧 𝜽)𝑽𝒙 + (𝑫𝒚𝑫𝒛(𝟏 − 𝐜𝐨𝐬 𝜽) + 𝑫𝒙 𝐬𝐢𝐧 𝜽)𝑽𝒚

+ (𝑫𝒛
𝟐(𝟏 − 𝐜𝐨𝐬𝜽) + 𝐜𝐨𝐬 𝜽)𝑽𝒛 

We can now treat the hypothesis plane as simply the plane formed by connecting the x and y axis 

(the plane z = 0). 

 

3.3.2. Ray casting and intersection 

A set number of rays are then uniformly cast through the mesh along the z-axis. Due to the prior 

mesh rotation this has the effect of casting the rays through the mesh in the direction 

perpendicular to the hypothesis plane being tested. The origin points of the rays are set as one 

less than the lowest z-axis value of the mesh’s vertices. The rays are linearly positioned along the 

x and y axis, determined by the newly rotated meshes bounding box. If a ray intersects with the 

mesh then the positions at which it intersects are recorded for use in calculating the symmetry 

measure. Intersections are determined using a simple ray-triangle intersection algorithm (see 

Figure 3.5) which calculates the distance 𝒕 that the ray has travelled before each triangle 
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intersection (Choi 1995, Moller and Trumbore 1997). The ray is defined with an origin point 𝑶 

and a direction 𝑫, with each triangle being defined in terms of the location of its corners 𝑪𝒙, 𝑪𝒚 

and 𝑪𝒛. 

 

𝑨 = 𝑫𝒐𝒕 (𝑪𝒚𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝒓𝒐𝒔𝒔(𝑫, 𝑪𝒛𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)) 

𝑼 =
𝟏

𝑨
𝑫𝒐𝒕 (𝑶𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝒓𝒐𝒔𝒔(𝑫, 𝑪𝒛𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)) 

𝑽 =
𝟏

𝑨
𝑫𝒐𝒕 (𝑫, 𝑪𝒓𝒐𝒔𝒔(𝑶𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝒚𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )) 

𝒕 = {

𝟏

𝑨
𝑫𝒐𝒕 (𝑪𝒛𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑪𝒓𝒐𝒔𝒔(𝑶𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑪𝒚𝑪𝒙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ))    𝒊𝒇 𝑨 ≠ 𝟎,𝑼 > 𝟎,𝑼 < 𝟏, 𝑽 > 𝟎,𝑼 + 𝑽 < 𝟏

 
−𝟏                                                              𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                                                          

 

 

As the origin point of each ray is also known, it is a trivial calculation to determine the location of 

each intersection. These intersections are then split into two sets based on which side of the 

hypothesis plane they are on. 

The efficiency of the ray-triangle intersection algorithm can be improved by first checking 

whether the ray being tested intersects any of the triangles’ bounding boxes. Only if the ray 

intersects this bounding box will the normal ray-triangle intersection algorithm be carried out. 

This initial check is performed very quickly and as many of the triangles’ bounding boxes will not 

intersect with the ray, this helps reduce the overall running time for the majority of models. 

 

3.3.3. Ray casting symmetry measure 

The total deviation 𝑻 between the models on each side of the hypothesis plane is calculated based 

on the two sets of intersection points 𝑨 and 𝑩 for the set of all rays 𝑹 and the hypothesis plane 𝑷. 

 

𝑻 =  ∑

{
 
 
 
 

 
 
 
 𝒎𝒂𝒙 {∑𝐦𝐢𝐧

𝒃∈𝑩
 𝒅(𝒂, 𝒃),∑𝐦𝐢𝐧

𝒂∈𝑨
 𝒅(𝒂, 𝒃),

𝒃∈𝑩𝒂∈𝑨

}   𝒊𝒇 |𝑨| > 𝟎, |𝑩| > 𝟎

∑𝒅(𝒂, 𝑷)

𝒂∈𝑨

  𝒊𝒇 |𝑨| > 𝟎, |𝑩| = 𝟎

∑𝒅(𝒃,𝑷)

𝒃∈𝑩

  𝒊𝒇 |𝑩| > 𝟎, |𝑨| = 𝟎

𝟎  𝒊𝒇 |𝑨| = 𝟎, |𝑩| = 𝟎

𝒓∈𝑹
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This means that for each ray there are three possible outcomes. 

- No intersection points are found. The ray is ignored and no calculation is done. 

- There are one or more intersection points on only one side of the hypothesis plane. The sum of 

the distances between each intersection point and the hypothesis plane is added to the total 

deviation. 

- There are one or more intersection points on both sides of the hypothesis plane. The sum of the 

minimum distances between each of the points in one set and any point in the other set is 

calculated. The same is then done but with the two sets swapped. Whichever of these two “sums 

of minimum differences” is greater is then added to the total deviation.  

Once all rays have been checked, the total deviation is divided by the number of rays which 

intersected the mesh. The inverse of this deviation is then used as a measure of symmetry 𝑺 that 

the hypothesis plane has with respect to the original model. Much like the Hausdorff distance 

approach, if this value is above a pre-determined threshold we conclude that the hypothesis 

plane is likely to be a plane of reflective symmetry. 

 

 

 

Figure 3.5: Ray ‘a’ intersects the triangle but ray ‘b’ does not 

(Choi 1995) 
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3.4 Symmetry measure normalisation 

Whilst both the Hausdorff distance and ray casting approaches calculate a measure of symmetry, 

this value is not normalised across models of different sizes. This is important for the 

determination of a suitable threshold to use when detecting approximate symmetry. The best 

way to normalise the symmetry measure is to multiply it by the cube root of the model’s volume. 

This is very difficult to compute however, since many of the scanned models contain holes or 

other distortions. Instead, there are two main ways for estimating the volume of a model. 

 

3.4.1 Bounding box 

The easiest method for estimating the volume 𝑬 of a model 𝑴 with a set of vertices 𝑽 is to simply 

use the volume of the mesh’s bounding box.  

𝑬 = (𝒎𝒂𝒙
𝒗∈𝑽

𝒗𝒙 −𝒎𝒊𝒏
𝒗∈𝑽

𝒗𝒙) (𝒎𝒂𝒙
𝒗∈𝑽

𝒗𝒚 −𝒎𝒊𝒏
𝒗∈𝑽

𝒗𝒚) (𝒎𝒂𝒙
𝒗∈𝑽

𝒗𝒛 −𝒎𝒊𝒏
𝒗∈𝑽

𝒗𝒛) 

Whilst this method is both fast and simple it lacks accuracy, especially for models which do not 

sufficiently fill the bounding box. 

 

3.4.2 Signed volume of a tetrahedron 

A more complex alternative is to estimate the model’s volume by calculating the signed volume of 

a tetrahedron based on each triangle 𝒕 within the model(Cha and Tsuhan 2001). These individual 

volumes are then summed together and the absolute value of this is used as an estimate for the 

model’s volume. 

𝑬 = |∑𝑫𝒐𝒕 (𝒗𝒂, (𝑪𝒓𝒐𝒔𝒔 (𝒗𝒃, 𝒗𝒄)))

𝒕∈𝑴

| 

(Note each triangle is made of three vertices 𝒗𝒂, 𝒗𝒃 and 𝒗𝒄) 

This second method generally provides a better estimate of the model’s volume and was therefore 

chosen to normalise the symmetry measures. 

For each model, the cube root of this volume estimate is multiplied by the symmetry measure to 

create a normalised value that could be compared against a symmetry threshold. 

𝑺𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒔𝒆𝒅 = 𝑺 √𝑬
𝟑  
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3.5 Additional variations 

In the previous sections we have detailed the general frameworks for our two proposed symmetry 

detection algorithms. However, there are several additional variations that we have implemented 

which attempt to improve these methods further. 

 

3.5.1 Polygon reduction 

One of the main limitations with the two methods described is the large amount of time needed 

to analyse detailed models, particularly with the Hausdorff distance approach. In order to reduce 

the overall computation time we can reduce the number of polygons within the mesh before 

attempting symmetry detection. One of the main polygon reduction methods is to use quadric 

error metrics (Garland and Heckbert 1997). This simplifies the mesh by iteratively contracting 

edges until the desired number of vertices or faces remains (see Figure 3.6). The choice about 

which edge to remove is determined by approximating the error cost of each possible contraction 

between a pair of vertices. The algorithm then iteratively removes the pair with minimum cost, 

and updates any affected edges. 

 

Figure 3.6: Edge contraction into a single point (Garland and Heckbert 1997) 

 

The cost of contracting an edge is derived using quadrics, which are constructed by using a 

heuristic to characterise the geometric error. Firstly, the plane equation is determined for each 

triangle within the original model, defined by the equation 𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 = 𝟎 where 𝒂𝟐 + 𝒃𝟐 +

 𝒄𝟐 = 𝟏. The derived plane is then represented in the form 𝒑 = [𝒂 𝒃 𝒄 𝒅]𝑻. The error for each vertex 

can then be defined with respect to the sum of squared distances to its intersecting planes. 

∆(𝒗) = ∆([𝒗𝒙 𝒗𝒚 𝒗𝒛 𝟏]
𝑻
) = ∑ (𝒑𝒕𝒗)𝟐

𝒑∈𝒑𝒍𝒂𝒏𝒆𝒔(𝒗)

 

 In addition, a matrix 𝑲𝒑 is constructed for each triangle. 

𝑲𝒑 = 𝒑𝒑
𝑻 = [

𝒂𝟐 𝒂𝒃 𝒂𝒄 𝒂𝒅
𝒂𝒃 𝒃𝟐 𝒃𝒄 𝒃𝒅
𝒂𝒄 𝒃𝒄 𝒄𝟐 𝒄𝒅
𝒂𝒅 𝒃𝒅 𝒄𝒅 𝒅𝟐

] 
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Allowing the error metric to be written in a solvable quadratic form. 

∆(𝒗) = 𝒗𝑻 ( ∑ 𝑲𝒑
𝒑∈𝒑𝒍𝒂𝒏𝒆𝒔(𝒗)

)𝒗 

The overall result of these edge contractions is that they can be used to greatly reduce the total 

number of computations required to detect symmetry within 3D models. This also potentially 

improves the algorithm’s accuracy by making dense groups of vertices sparser, resulting in a 

more uniform spread of the model’s vertices. However, too much simplification is likely to result 

in an increased error rate. A visual display of these reductions can be seen in Figure 3.7. 

 

 

Figure 3.7: A collection of simplified models, the number  

of faces reduced by approximately half each time (Garland and Heckbert 1997) 

 

3.5.2 Laplacian smoothing 

Another potential improvement which may improve our algorithms’ accuracy is to smooth the 

mesh before performing symmetry detection. Whilst there are many different smoothing 

functions for 3D objects, the most common and simple of these is Laplacian smoothing. The 

Laplacian smoothing algorithm is a method designed to smooth a 3D polygonal mesh by changing 

the location of each vertex to the average of its adjacent vertices (see Figure 3.8). This can be 

achieved in O(n) time and space. The formal definition for the Laplacian smoothing operation can 

be defined per-vertex as, 

𝒑𝒊 =
𝟏

𝑵
∑𝒒𝒋

𝑵

𝒋=𝟏

 

Where 𝑵 represents the number of vertices connected by an edge to the vertex 𝒊 and 𝒑𝒊 is the new 

position for vertex 𝒊 based on the adjacent positions 𝒒𝒋 

There are two main variations for updating the positions of the vertices. The first updates the 

positions of the vertices in a single step and all vertices use the same original set of positions to 

update their locations. This is known as the simultaneous version. The second updates the 

positions of each vertex immediately after it is computed, meaning that early adjustments can 

influence later ones. This is known as the sequential version. Whilst the simultaneous version 

requires more memory space than the sequential version, it usually produces better results, 

meaning that this is the technique that is most commonly used. 
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Figure 3.8: The basic Laplacian smoothing algorithm 

(Vollmer, Mencl et al. 1999) 

 

Whilst this algorithm is simple to understand and implement, it suffers from some key problems. 

The most significant is the deformation and shrinkage of the mesh after many repeated 

iterations. A popular variant of the Laplacian smoothing algorithm, referred to as the HC 

Laplacian algorithm, is designed specifically for noisy surface meshes and attempts to avoid 

these problems (Vollmer, Mencl et al. 1999). This algorithm reduces shrinkage by pushing the 

vertices that have been adjusted by the Laplacian smoothing iterations back towards their 

original location (see Figure 3.9). More specifically, the modified points 𝒑𝒊 are moved towards the 

previous points 𝒒𝒊 with a distance 𝒅𝒊 equal to the average of the differences. 

𝒃𝒊 = 𝒑𝒊 − 𝒒𝒊 

 

𝒅𝒊 = −
𝟏

𝑵
∑𝒃𝒋

𝑵

𝒋=𝟏

 

Whilst this does not completely remove the problem of shrinkage it does dramatically reduce its 

effect, particularly for models that contain noise. This makes it an ideal candidate for testing the 

effects of smoothing a model before attempting to detect symmetry. Unlike polygon reduction, 

Laplacian smoothing only alters the positions of the model’s vertices. This means that the time 

taken to analyse a smoothed model will be approximately the same as the original, although the 

smoothing takes a small amount of time. A visual comparison of the results of these two 

algorithms can be seen in Figure 3.10. 
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Figure 3.9: The HC Laplacian algorithm variation of the Laplacian smoothing algorithm 

(Vollmer, Mencl et al. 1999) 

 

 

Figure 3.10: From left to right: original model, model smoothed using basic Laplacian smoothing 

algorithm, model smoothed using HC Laplacian smoothing algorithm 

 

 

3.5.3 RANSAC 

Although it has been demonstrated that using PCA to identify potential symmetry planes is 

robust against minor noise, for models with only approximate symmetry and a heavy leaning 

away from the most symmetrical plane, the PCA method may not provide the best estimation. 

There are no easy ways of resolving this without considerably reducing the efficiency of the 

overall method. However, if this is not a problem then using the RANSAC algorithm may reduce 

the influence of outliers. The RANSAC (RANdom SAmple Consensus) algorithm is a general 

method used to fit a model to data which is contaminated with gross outliers. In this case we can 

apply RANSAC to our method of identifying the PCA eigenvectors using the mesh’s vertex set.  
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1. Firstly, the complete set of vertices is used for the determination of both the PCA 

eigenvectors and the symmetry measure for each hypothesis plane.  

2. If no likely planes of reflective symmetry are found, then the PCA eigenvectors for the 

model are recalculated using a set percentage of randomly selected points.  

3. The hypothesis planes for the new PCA eigenvectors are then calculated. 

4. The symmetry measure for each of these planes is then determined using all the original 

vertices, not just those that were randomly selected. 

5. If any of these planes are found to be likely planes of reflective symmetry then they are 

recorded, otherwise repeat from step 2. 

While this is a very naïve and inefficient algorithm for improving symmetry detection, it works 

well in cases where computation time is not a major factor. 

 

3.5.4 𝒌-d tree 

A 𝑘-d tree is a space partitioning data structure for organising points in 𝑘-dimensional space 

(Bentley 1975). Formally, a 𝑘-d tree is a binary partitioning where the the split operation is 

performed cyclically along each axis direction using axis-aligned hyper-planes. 

 

For our method, we use a 𝑘-d tree to potentially improve the overall runtime of our ray casting 

approach by reducing the time taken to find ray-triangle intersections. Although we have already 

improved the runtime slightly by first performing an intersection test for each ray using the 

triangles’ bounding boxes, using a 𝑘-d tree may improve this even more. In this case we set 𝑘=2 

as we do not need to partition the mesh along the z-axis, as this is the direction along which the 

rays are cast. 

 

The 𝑘-d tree is constructed by recursively splitting the sets of vertices (initially all vertices are in 

one set) into two smaller subsets based on the median of either the x or y value of their positions 

(the axis to split on is swapped for each iteration). Each iteration effectively doubles the number 

of vertex sets and once a desired depth is reached the algorithm halts (see Figure 3.11).  

 

This 𝑘-d tree can now be used during ray casting to reduce the total number of ray-triangle 

intersection tests that need to be carried out. Firstly, we determine which of the 𝑘-d tree subsets 

the ray will intersect. We then perform our regular intersection algorithm but only for the 

triangles which have at least one of their vertices within the subset that the ray intersected. The 

triangles that each 𝑘-d tree subset is associated with are determined before any rays are cast to 

prevent repeat calculations. This method may be used alongside, or instead of, the original 

bounding box improvement. 

 

There is a small issue with this method however, which may decrease the accuracy of the 

symmetry detection. It is entirely possible (especially for implementations where the depth of the 

𝑘-d tree is high) for a situation to arise where none of a triangle’s vertices are located within a 

particular subset but part of the triangle is. This results in an inaccurate reading for any rays 

that may pass through this portion of the triangle. This particular problem is demonstrated 

visually in Figure 3.12. Whilst there are more sophisticated methods for correctly identifying 
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which subsections intersect the triangle, they take much longer to run, counteracting any 

potential runtime reduction.  This means that a 𝑘-d tree should only be used in situations where 

time is a critical factor and should ideally be paired with a low number of rays being cast. 

 
  

 

 

 

 

 

 

 

 

 
Figure 3.11: 𝑘-d tree partition over subsequent iterations 

(Standford 2000) 

 

 
Figure 3.12: The problem with 𝑘-d tree method, the triangle’s vertices are only located within 

three sections but the triangle actually overlaps four sections 

 

 

3.5.5 Non-uniform casting 

Another potential variation to the ray casting method is to improve upon the regular uniform 

casting to a more advanced non-uniform method. There are many different ways to perform this 

but we will only focus on one of them. 
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One of the simplest methods to improve upon uniform ray casting is to base the distribution of 

the rays on the distribution of the model’s vertices. This is performed by spreading the rays along 

the model, based on the number of vertices rather than the total length (see Figure 3.13). This 

results in the algorithm obtaining a greater level of information for the sections of the model 

which contain more vertices and less information about the sections with fewer vertices. 

 

In context, this is achieved by first sorting the vertices into order along the x and y axis (after the 

vertices and plane have been orientated correctly). Each of these sorted sets (one for x-axis 

ordering 𝑿 and the other for y-axis ordering 𝒀) is then split into subsets based on the number of 

rays 𝑹 that are being cast along each axis. The starting position for the rays are then determined 

by taking the first value of each set for all possible pairings of the x-axis ordered subsets and y-

axis ordered subsets. 

 

𝒙-𝒂𝒙𝒊𝒔 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 = 𝑿𝒑 = {𝒙: 𝒙 = 𝑿
𝒏
|𝑿|
𝑹

 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟎 𝒂𝒏𝒅 𝑹 − 𝟏} 

𝒚-𝒂𝒙𝒊𝒔 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 = 𝒀𝒑 = {𝒚: 𝒚 = 𝒀
𝒏
|𝒀|
𝑹

 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒏 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝟎 𝒂𝒏𝒅 𝑹 − 𝟏} 

𝑵𝒐𝒏-𝒖𝒏𝒊𝒇𝒐𝒓𝒎 𝒓𝒂𝒚 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 = {(𝒙, 𝒚) 𝒘𝒉𝒆𝒓𝒆 𝒙 ∈ 𝑿𝒑 𝒂𝒏𝒅 𝒚 ∈ 𝒀𝒑} 

 

 

 

Figure 3.13: Comparison of uniform ray casting and non-uniform ray casting for a set of vertices 

in one direction 

 

 

3.6 Summary 

Within this chapter we have detailed the design and implementation of two general algorithms 

for detecting global approximate reflective symmetry within scanned 3D models (Hausdorff and 

ray casting), as well as several additional variations which attempt to improve their runtime 

and/or accuracy (polygon reduction, Laplacian smoothing, RANSAC, 𝑘-d tree, non-uniform 

casting). The next chapter details our evaluation of each method and variation. 
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Figure 3.14: Flowchart of the entire program
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4 Results 

4.1 Experimental design 

The testing of both the Hausdorff distance and ray casting methods, as well as all applicable 

variations, was initially performed using the Princeton Shape Benchmark (PSB) (Shilane, Min et 

al. 2004). This is a database containing 1814 3D polygonal meshes and has been used previously 

to test many model analysis programs. The models within this database vary greatly in terms of 

their size, detail and of course their symmetry. 

 

After this, more specific tests were conducted using a smaller collection of 32 scanned 3D models 

(all of which can be viewed in the appendix). These models were obtained using the scanning 

program 123DCatch (Catch 2015). This set of models was also used to determine a suitable 

threshold for the symmetry measure of each method. 

 

The lack of available source code for other prior methods made it difficult to compare our 

algorithms accuracy and runtime against them. As a result, we have only been able to compare 

our implementations against each other, for various different inputs and parameters. 

 

Testing was performed on a machine running Windows 8.1 with an i7-4690 processor and 16GB 

of RAM. Both algorithms were developed in C++ using Microsoft Visual Studio 2013. 

 

4.2 Overall accuracy 

Whether an object has approximate symmetry depends very much on the desired level of 

accuracy. There is no mathematical definition of approximate symmetry and it is generally left 

for the user to decide whether the symmetry is sufficient enough for their purpose. Both our 

methods demonstrated 100% accuracy when applied to models containing perfect symmetry, but 

the accuracy for approximate symmetry detection is more difficult to quantify (see Figure 4.1). 

How much each half of a perfectly symmetrical model may differ before it is no longer considered 

approximately symmetrical is ultimately dictated by the desired application. 

 

To gain a better measure of accuracy, each method was used to detect global reflective symmetry 

within the collection of 32 scanned 3D models. All of the real-world objects used in these scans 

had a high level of approximate reflective symmetry, although the models were distorted slightly 

by the scanning process. For each model, three hypothesis planes were identified by PCA and the 

correct plane of reflective symmetry was determined manually. 
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Each of our symmetry detection methods were then applied to each of the hypothesis planes 

identified by PCA. Each of these planes was then given a symmetry measure representing the 

level of reflective symmetry the model has with respect to this plane. The symmetry measure for 

the correct plane of reflective symmetry was then compared against the values for the other two 

incorrect planes. For the ray casting approach several variations on the number of rays cast were 

tested (25,100, 400 and 2500 rays).  

 

The graphs for the Hausdorff distance and the ray casting variant with 400 rays are shown in 

Figures 4.2 and 4.3 respectively.  

We have decided to show only certain key graphs for each results section. Graphs that are not 

given here can be found in Appendix B. (Note, although the data obtained in these experiments 

was discrete it is easier to understand and compare the methods if line graphs are used). 

 

 

 

(a)      (b) 

Figure 4.1: Although no official definition is available we would typically consider model (a) to 

contain approximate reflective symmetry, but not model (b)  
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Figure 4.2: The reflective symmetry measure given to each model’s hypothesis planes using the 

Hausdorff distance based method 

 

 
Figure 4.3: The reflective symmetry measure given to each model’s hypothesis planes using the 

ray casting based method with a 20x20 grid of rays 
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The ideal result from these experiments would be to have all the values for the symmetry 

measure of the correct plane greater than any value from either of the other two incorrect planes 

(no overlap between these sets). This would allow us to easily derive a threshold value which 

could then be used to identify symmetry planes in unknown models. In order to determine an 

approximate level of overlap we can calculate the index of dispersion 𝑫 for the difference between 

the symmetry measure of the correct hypothesis plane 𝑪 and the greatest incorrect plane 𝑰. A 

lower 𝑫 value means less overlap and improved accuracy (see Figure 4.4). 

 

𝑫 =
𝝈𝟐

𝝁
 

𝝁 =
𝟏

𝑵
∑𝑪𝒂 − 

𝟏

𝑵
∑𝑰𝒃

𝑵

𝒃=𝟏

𝑵

𝒂=𝟏

 

𝝈𝟐 = 𝒗𝒂𝒓(𝑪) + 𝒗𝒂𝒓(𝑰) + 𝟐(𝒄𝒐𝒗(𝑪, 𝑰)) 

𝒗𝒂𝒓(𝑿) =
𝟏

𝒏
∑(𝒙𝒊 − 𝝁)

𝟐

𝒏

𝒊=𝟏

 

𝒄𝒐𝒗(𝑿, 𝒀) =
𝟏

𝒏𝟐
∑∑

𝟏

𝟐
(𝒙𝒊 − 𝒙𝒋) ∙ (𝒚𝒊 − 𝒚𝒋)

𝑻
𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

 

 

 
Figure 4.4: The index of dispersion for each method 
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The Hausdorff distance method gave the lowest index of dispersion although it did have several 

instances where the correct plane received a lower measure than an incorrect plane. The first of 

the ray casting algorithms, with only 25 rays, has a higher index of dispersion than the other 

three ray casting variations. This is likely due to the low number of rays that were cast, resulting 

in the algorithm not having sufficient data to make a good estimate of reflective symmetry. The 

other three ray casting algorithms all produced very similar results, indicating that it is unlikely 

that the estimates could be improved further by increasing the number of rays. As a result of this 

similarity, the 400 ray variant was chosen as a baseline for the potential improvements as it had 

the lowest index of dispersion. It is likely that any of the proposed enhancements would perform 

similarly with the 100 and 2500 ray variants. For the ray casting approach model 8 was a clear 

outlier, with a very large symmetry measure for one of its incorrect planes. This was due to our 

ray casting method failing to sample the model effectively and is further discussed in Section 5.3. 

Model 8 was therefore removed for subsequent calculations of the index of dispersion to give a 

better comparison between the ray casting and Hausdorff distance approaches (see Figure 4.5). 

 

 
Figure 4.5: The index of dispersion for each method with model 8 removed for ray casting 

 

4.3 Overall runtime 

The speed of each of our methods varies depending upon different factors. For the Hausdorff 

distance method the runtime of the algorithm increases relative to the number of vertices the 

model has. For the ray casting method the runtime of the algorithm increases relative to both the 

number of faces the model has and how many rays are cast through it. Fortunately, the 

relationship between the number of vertices and number of faces within a model is typically very 

linear, with the number of faces approximately double the number of vertices. This allows us to 

compare the runtime of both methods against the number of vertices within the model, making it 

easier to compare each method’s runtime (see Figures 4.6 and 4.7). 
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Figure 4.6: The total runtime for each algorithm relative to the number of vertices in the model 

for the all models within the Princeton Shape Benchmark 

 

 
Figure 4.7: The total runtime for each algorithm relative to the number of vertices in the model 

for the set of scanned models 
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The previous graphs indicate that the time complexity for the Hausdorff distance method is 

approximately O(n2), whereas the time for each of the ray casting algorithms is closer to linear. 

Even the slowest ray casting method tested (50x50 rays) becomes faster than the Hausdorff 

distance method for a relatively low number of vertices (approximately 80,000 vertices). 

Variations using a lower number of rays become faster than the Hausdorff distance method for 

an even lower number of vertices. This means that for a large majority of models the ray casting 

approach is quicker than the Hausdorff distance approach, assuming the number of rays cast is 

sufficiently low. There also appears to be more variation in the runtime of the ray casting 

methods when compared to the Hausdorff distance method. 

 

4.4 Additional Variations 

4.4.1 Polygon reduction 

Polygon reduction can be used to dramatically reduce the overall runtime of both our symmetry 

detection methods. However, if the amount of polygon reduction is too large the accuracy of our 

algorithms will suffer. Also, as many of the models within the PSB were designed to have a very 

low number of faces, polygon reduction would not be suitable. Because of this, the results for 

polygon reduction were only obtained using the set of 32 scanned models. Polygon reduction was 

tested using both 50% reduction (see Appendix B.) and 90% reduction (see Figures 4.8 and 4.9). 

The index of dispersion (see Figure 4.10) and runtime (see Figure 4.11) was also recorded. 

 

 

 
Figure 4.8: The reflective symmetry measure given to each model’s hypothesis planes using the 

Hausdorff distance based method after the model has had 90% of its polygons removed 
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Figure 4.9: The reflective symmetry measure given to each model’s hypothesis planes using the 

ray casting based method after the model has had 90% of its polygons removed 

 

 

Figure 4.10: The index of dispersion for each method with and without polygon reduction 
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Figure 4.11: The total runtime for each method relative to the number of vertices in the model 

after it has had 90% of its polygons removed 

 

From these results we can see that polygon reduction not only dramatically reduces the runtime 

of both methods (see Table 4.1) but also improved their accuracy for a large proportion of the 

models. 90% polygon reduction appears to be the best choice for both time and accuracy, with the 

lowest speed and index of dispersion for both methods. Whilst some extra time was taken to 

reduce the models beforehand, the time that was needed to analyse the reduced meshes was 

significantly reduced. This reduction in the number of polygons also has the effect of making the 

spread of the model’s vertices more uniform, reducing the influence of any large vertex clusters or 

irregular sampling. This had a major effect not only on the accuracy of the Hausdorff distance 

method but also for the ray casting approach (although the impact was less pronounced). 

Although the accuracy and speed of both algorithms has been improved by polygon reduction, 

there are other potential improvements that may provide even more benefits. 

 

 Original 50% reduction 90% reduction 

Hausdorff distance 70.53 18.09 1.18 

Ray casting (400) 7.92 4.16 1.11 

Table 4.1: Average runtime (sec) for symmetry detection using scanned models in sample dataset 

 

4.4.2 Laplacian smoothing 

HC Laplacian smoothing was applied to each of the scanned models after they had been subject 

to 90% polygon reduction to see if this would provide even better accuracy. Laplacian smoothing 

is extremely quick and thus has little impact on the overall runtime of each method. 

Unfortunately, after comparing the results for Laplacian smoothing against the original data, it 

would appear that the improvements (if any) are minimal (see Figure 4.12). 
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Figure 4.12: The index of dispersion for each method with and without Laplacian smoothing 

 

4.4.3 RANSAC 

Using RANSAC to improve the identification of hypothesis planes by PCA is an inefficient and 

often unnecessary variation, due to the large amount of time that it takes with no guarantee of 

improvement. It is therefore only advised for situations where the time taken is secondary to the 

detection accuracy. As RANSAC selects the vertices randomly, it is difficult to obtain any 

meaningful results from experimentation. Although RANSAC can improve symmetry detection 

accuracy, the time taken to find any improvements is always unknown. For each RANSAC 

iteration the base algorithm is started again from the beginning, greatly increasing the overall 

runtime (ten RANSAC iterations means the runtime is approximately ten times longer). 

 

4.4.4 𝒌-d tree 

Using a 𝑘-d tree to divide up the model’s faces before performing ray casting can potentially 

decrease the overall runtime, assuming the depth for the 𝑘-d tree is chosen correctly. The 

maximum depth that a 𝑘-d tree can theoretically have for a model with 𝑽 vertices is between  √𝑽 

and 𝑽. However, as our model’s vertices are located in three dimensions and our 𝑘-d tree is only 

constructed in two dimensions the depth will likely be less than this. This is due to the fact that 

some of the model’s vertices will have the same x and y axes coordinates but have a different z-

axis value. This makes it difficult to establish a perfect depth that the 𝑘-d tree should have, even 

if the number of vertices is known. To gain a good estimate however, many different depths were 
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tested for a small collection of the scanned models (see Figures 4.13 and 4.14). Ray casting was 

performed using 400 rays. 

 

 
Figure 4.13: The total runtime for each model relative to the depth of the 𝑘-d tree 

 

 
Figure 4.14: The total runtime for each of the smaller models relative to the depth of the 𝑘-d tree 
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Only the smaller models (less than 70,000 vertices) showed any improvement with respect to the 

original method (𝑘-d tree depth equal to zero). The decrease in their runtime was also fairly 

small, with the peak improvement typically between depth = 10 and depth = 20. This means that 

whilst using a 𝑘-d tree can potentially reduce the algorithm’s overall runtime for smaller models, 

it usually requires more time if used on larger models. This, coupled with the potential decrease 

in accuracy, means that using a 𝑘-d tree is generally not advisable. 

 

4.4.5 Non-uniform casting 

Using the distribution of the vertices to determine the positions from which to cast rays may also 

potentially improve the accuracy of the ray casting method. The ray casting method with 400 

rays was tested using non-uniform casting to see if there was any improvement in accuracy (see 

Figures 4.15 and 4.16). While this new casting method does take slightly more time than uniform 

casting as the vertices need to be sorted beforehand, the impact of this on the total runtime is 

negligible. 

 

 
Figure 4.15: The reflective symmetry measure given to each model’s hypothesis planes using the 

ray casting based method with non-uniform casting after the model has been reduced 
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Figure 4.16: The index of dispersion for the ray casting method with uniform and non-uniform 

casting 

 

From these results we can see that using non-uniform casting does appear to slightly improve the 

accuracy for the ray casting method. This is because non-uniform casting results in a greater 

focus on the sections of the model with more vertices. These sections are likely to contain more 

information about the model’s symmetry allowing our algorithm to derive a more accurate 

symmetry measure. 

4.4.6 Additional variations discussion 

Out of the five additional variations tested only polygon reduction was shown to consistently 

improve both the runtime and accuracy of our methods. Non-uniform casting did not improve our 

runtime but did slightly improve our accuracy. The results of the Hausdorff distance and ray 

casting (20x20) methods, with 90% polygon reduction and non-uniform casting, were therefore 

used to determine a suitable threshold for reflective symmetry. 

 

4.5 Threshold determination 

In order to gain a measure of the accuracy of each method it is necessary to determine a suitable 

threshold for the symmetry measure of each method. This threshold value can then be used to 

identify reflective symmetry planes in unknown models. If the symmetry measure for a plane is 
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above this threshold then we classify it as a plane of global approximate reflective symmetry. For 

the ray casting approach model number 8 was removed as an outlier in order to calculate a more 

suitable threshold (as previously mentioned). The reasons for this anomaly are discussed in 

Section 5.3.  

 

The thresholds calculated are based on the assumption that the cost of a false positive is the 

same as the cost of a false negative. These thresholds should therefore be tailored by the 

situation and conditions they are applied to. It is important to note that both the Hausdorff 

distance and ray casting methods (with 90% polygon reduction) always gave the correct plane of 

reflective symmetry a higher value than either of the incorrect planes. This means that if the 

user knows that there is a plane of reflective symmetry within a model our methods can 

determine this plane with a very high level of certainty. 

The range of possible values was determined for each method, between the lowest value for the 

correct plane and the highest value of an incorrect plane.  

 

Hausdorff Distance Method: 

- Minimum Correct symmetry measure= 32.75 

- Maximum Incorrect symmetry measure = 46.70 

- Mid-range = 39.7 

-  

Ray Casting Method: 

- Minimum Correct symmetry measure = 27.69 

- Maximum Incorrect symmetry measure = 32.69 

- Mid-range = 30.19 

 

By using the mid-range value we can now determine the number of planes that would be 

misclassified if this was used as the threshold. 

 

Hausdorff Distance Method: 

- Number of misclassifications = 3 

-  

Ray Casting Method: 

- Number of misclassifications = 6 

 

The average symmetry measure of these misclassifications should be suitable as a threshold for 

each method. 

Hausdorff Distance Method: 

- Threshold ≈ 40 

- Accuracy per plane = 96.88% 

 

Ray Casting Method: 

- Threshold ≈ 29 

- Accuracy per plane = 94.62% (without model 8) 

- Accuracy per plane = 93.75% (with model 8) 
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5 Discussion 

After investigating these two methods and their possible variations we can see that they are both 

effective at detecting reflective symmetry within scanned 3D models. The limitations and outliers 

for each method as well as their overall accuracy and runtime are discussed in this section. 

 

5.1 Principal component analysis limitations 

Although PCA correctly identified (within a small margin of error) the reflective symmetry plane 

for all the scanned models tested, occasionally the symmetry plane for a model is not among 

those identified by PCA. This is usually the case for models with only a small level of 

approximate symmetry. An example of this is shown in Figure 5.1. The chair shown here has a 

large clustering of vertices in the height adjustment lever. This causes PCA to calculate 

eigenvectors that are more directed towards this lever, causing the algorithm to misidentify the 

ideal plane of reflective symmetry. This issue is very rare however and should not be a problem 

on good scans of symmetrical objects (as demonstrated by the models used in these experiments). 

 

 

Figure 5.1: Model of chair, PCA identifies incorrect hypothesis planes 
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5.2 Hausdorff distance method limitations 

As mentioned previously, the Hausdorff distance method is less efficient than the ray casting 

approach when dealing with larger models. It is also not suitable when the sampling resolution of 

the model is inconsistent on either side of the symmetry plane. This problem is largely present 

within the results for the Hausdorff distance method without polygon reduction. The most 

noticeable case where this occurs is for model 11. For this model the correct plane is given a 

symmetry measure lower than both of the other two incorrect planes. A brief analysis of this 

model demonstrates why this occurs (see Figure 5.2).  

 

For model 11 the number of vertices on each side of the face differs significantly. This has a very 

large effect on the Hausdorff distance approach as it relies on the number of vertices (sampling 

resolution) to be roughly equal on each side of the reflective symmetry plane. Polygon reduction 

helps to alleviate this problem although the benefit obtained depends very much on the topology 

of the original model.  

The Hausdorff distance approach also lacks the flexibility to adapt its speed and resolution to the 

desired situation, unlike the ray casting approach. It can however be used on models that consist 

only of vertices (e.g. point cloud models) as it does not require the mesh’s faces to identify 

reflective symmetry. 

 

 
Figure 5.2: The two halves of model 11, the left half contains far fewer vertices than the right 

half 
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5.3 Ray casting method limitations 

The primary advantage of the ray casting method is that it is typically faster than the Hausdorff 

distance approach for models with a large number of vertices, as well as being more 

customisable. It does suffer from some limitations however, the most noticeable being its 

potential to ignore certain parts of the model when performing its calculations. Whilst the 

Hausdorff distance approach uses all the vertices in the model to perform its calculations, the ray 

casting method only uses the points at which the cast rays intersect the mesh. The problems this 

may cause are demonstrated by looking at the results for model 8. The symmetry measure of this 

model is very high for the correct plane as well as one of the incorrect ones. Closer analysis of the 

model indicates a likely cause of this abnormally high measure for the incorrect plane (see Figure 

5.3). 

 

The correct plane of reflective symmetry has been accurately identified as down the middle of the 

model’s front view. However, the hypothesis plane that passes down the middle of the side view 

is also given a high symmetry measure by the ray casting method. This is likely a combination of 

two factors. Firstly, the majority of the jar, apart from the head and line at the back, has 

reflective symmetry with respect to both of these planes. Secondly, whilst the head of the jar was 

detected by the algorithm, explaining why the incorrect plane still has a lower symmetry 

measure than the correct one, the line at the back is very thin. This means that it is possible that 

the rays cast through the front view of the model did not intersect with this part of the object as 

much as would be desirable. This means that the algorithm would have little knowledge of this 

section of the model and would estimate a symmetry measure for the hypothesis plane without 

fully taking account of it. This issue does not occur when using the Hausdorff distance method as 

all the mesh’s vertices are taken into account. This property of the ray casting method may in 

some cases be considered a benefit, depending on whether the user classifies the line at the back 

of the model as noise. 

 

 
Figure 5.3: Front and side view of model 8 
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5.4 Choice of method 

The choice of which approach to use depends greatly upon the situation and the types of models 

they are to be applied to. The Hausdorff distance method generally gave better accuracy than the 

ray casting method after the use of polygon reduction. This is largely due to the fact that this 

reduction made the sampling resolution more consistent throughout the model. The ray casting 

approach was typically both faster and more customizable than the Hausdorff distance method 

and would therefore be suitable to situations where time is a critical factor or if the models are 

known to have a very irregular sampling rate. It is also possible to use both methods in 

conjunction with each other (e.g. take the average symmetry measure of both methods) for 

situations where the accuracy of detection is very important. 

 

5.5 Multiple symmetry planes 

In our evaluation we have only considered models with one plane of reflective symmetry. Our 

methods also work on any models that contain multiple planes of reflective symmetry. However, 

they can only identify at most three hypothesis planes, due to the limitations of PCA. To confirm 

that our methods can detect multiple planes of reflective symmetry they were tested on several 

models contacting two or more reflective symmetry planes (see Figure 5.4). The results are very 

promising, with both methods identifying all planes of reflective symmetry (up to three) correctly, 

as well as a 0% false positive rate. This is a very preliminary result and requires further 

investigation. However, there is no reason to doubt that this result is incorrect and that our 

methods would perform any worse on models with multiple planes of reflective symmetry rather 

than just one. 

 

 

Figure 5.4: Example of model containing two planes of reflective symmetry
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5.6 Applications 

Although the main focus of this report is on the design of the proposed symmetry detection 

algorithms, some of the potential applications of symmetry detection were attempted using our 

methods and are briefly described within this section. 

 

5.6.1 Model remeshing 

Once a reflective symmetry plane for a model has been identified it can be used to increase the 

symmetry of the model for further applications. One of the simplest ways of attempting to make 

a model more symmetrical with regard to its symmetry plane is described below.  

Firstly, the model is reflected about its symmetry plane to create a new model, referred to as the 

reflected model. Each vertex in the original model is then moved to the midpoint between itself 

and the closest vertex in the reflected model. Whilst this is a very basic algorithm to accentuate a 

model’s symmetry the effects are prominent enough to be observed on our scanned models (see 

Figure 5.5). This procedure can also be performed multiple times to increase the level of 

symmetry further, but the effect will decrease each time. More advanced algorithms for 

symmetry based remeshing could also be implemented (Podolak, Golovinskiy et al. 2007). 

 

 

 

(a)          (b) 

Figure 5.5: Original model (a) and remeshed model (b) for model 32 
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5.6.2 Shape classification 

Many existing methods for shape classification use symmetry as a key feature for distinguishing 

models (Kazhdan, Funkhouser et al. 2004). By using symmetry as a means to orientate an 

unclassified object it is then possible to identify similar models or shapes, which can then be used 

to classify the object. Reflective symmetry has also been shown to be the key factor in shape 

perception and viewpoint selection (Reisfeld, Wolfson et al. 1995). Knowing a model’s symmetry 

planes can therefore help in selecting an optimum orientation and viewpoint when observing the 

model. This concept of model alignment can also be extended to many other applications, such as 

database matching or object identification. 

 

5.6.3 Model compression 

Another potential benefit of identifying symmetry within a 3D model is that is allows the model 

to be stored using less memory. If we know that a model contains a plane of reflective symmetry 

then only vertices and faces on one side of this plane need to be stored. Then, when the model is 

required, we can simply reflect the stored data about the symmetry plane to give the other half of 

the model. This is usually only viable with models that contain perfect symmetry or an extremely 

high level of approximate symmetry, as the uncompressed model may appear distorted if the 

original level of symmetry was too low. 

 

 

 

 

 

 

 

 

 

 



Conclusion and Future Work  51 

 
 

6 Conclusion and Future Work 

This report provides a detailed description and analysis of two novel methods, as well as several 

additional improvements, for global approximate reflective symmetry detection within scanned 

3D models. These methods are both fast and robust, identifying planes of reflective symmetry 

correctly for the majority of 3D models tested. The first of these methods uses a variation of the 

Hausdorff distance to identify reflective symmetry, whilst the second method utilises ray casting 

and triangle intersection. When applied to our database of 32 scanned 3D models, the Hausdorff 

distance method had an accuracy of 96.88% whilst the ray casting method had an accuracy of 

93.75%. In addition, both methods (with suitable variations) always assigned a symmetry 

measure to the correct plane that was larger than either of the other two incorrect planes. 

However, it is important to note that approximate symmetry is not an absolute property but 

rather a measure relative to the model’s own perfect symmetry. Whilst approximate symmetry 

detection is difficult to quantify, we are confident that our methods provide a robust and fast 

approach for detecting global approximate reflective symmetry in scans of 3D models. 

 

Future work 
The area of symmetry detection within 3D models has received a large amount of prior research, 

yet there is still a lot of potential for future work. Whilst the methods proposed in this paper only 

investigated global reflective symmetry they could be extended to many other types of symmetry. 

These could include rotational symmetry, translational symmetry or partial symmetry along 

with many others. 

 

The ability of PCA to identify potential planes of symmetry could also be extended to suit 

different types of symmetry, as well as being improved to provide better accuracy for the current 

system. More sophisticated methods for determining the models centre of mass may also prove 

helpful, such as using centralised moments. 

. 

Whilst the issue of having an irregular sampling resolution can be partially solved by polygon 

reduction, the Hausdorff distance method still suffers from having a greater runtime than the 

ray casting approach for the majority of scanned models. This is largely due to the need to 

compare every vertex point to every other vertex point within the mesh. An investigation into 

how this could be improved may provide a faster method which would greatly improve the speed 

of our algorithm. 

 

The ray casting method’s main weakness is that it may miss important sections of the model if 

the cast rays do not intersect it there. This issue may be reduced if a more sophisticated method 

for casting rays was developed, to put even greater focus on the important sections of the model. 
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Appendix A: Collection of scanned 3D models 

 

 
Figure A.1: Model 1     Figure A.2: Model 2 

 

 
  Figure A.3: Model 3     Figure A.4: Model 4 
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Figure A.5: Model 5     Figure A.6: Model 6 

 

Figure A.7: Model 7     Figure A.8: Model 8 

 
  Figure A.9: Model 9     Figure A.10: Model 10 
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Figure A.11: Model 11     Figure A.12: Model 12 

 
Figure A.13: Model 13     Figure A.14: Model 14 

 

Figure A.15: Model 15     Figure A.16: Model 16 
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Figure A.17: Model 17     Figure A.18: Model 18 

 
Figure A.19: Model 19     Figure A.20: Model 20 

 

Figure A.21: Model 21     Figure A.22: Model 22 
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Figure A.23: Model 23     Figure A.24: Model 24 

 
Figure A.25: Model 25     Figure A.26: Model 26 

 

Figure A.27: Model 27     Figure A.28: Model 28 
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Figure A.29: Model 29     Figure A.30: Model 30 

 
Figure A.31: Model 31     Figure A.32: Model 32 
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Appendix B: Additional graphs for results 

 
Figure B.1: The reflective symmetry measure given to each model’s hypothesis planes using the 

ray casting based method with a 5x5 grid of rays 

 

 
Figure B.2: The reflective symmetry measure given to each model’s hypothesis planes using the 

ray casting based method with a 10x10 grid of rays 
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Figure B.3: The reflective symmetry measure given to each model’s hypothesis planes using the 

ray casting based method with a 50x50 grid of rays 

 

 
Figure B.4: The relation between vertex number and face number for each of the scanned models 
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Figure B.5: The total runtime for each of the faster algorithms relative to the number of vertices 

in the model for the set of scanned models 

 

 
Figure B.6: The total runtime for each of the slower algorithms relative to the number of vertices 

in the model for the set of scanned models 
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Figure B.7: The reflective symmetry measure given to each model’s hypothesis planes using the 

Hausdorff distance based method after the model has had 50% of its polygons removed 

 

 
Figure B.8: The reflective symmetry measure given to each model’s hypothesis planes using the 

ray casting based method after the model has had 50% of its polygons removed 
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Figure B.9: The reflective symmetry measure given to each model’s hypothesis planes using the 

Hausdorff distance based method after the model has been reduced and smoothed 

 

 
Figure B.10: The reflective symmetry measure given to each model’s hypothesis planes using the 

ray casting based method after the model has been reduced and smoothed 
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