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Abstract—In response to the growing demand for AI systems
that can operate the physical world, there has been an increas-
ing interest in enhancing their physical reasoning capabilities.
Equally crucial is the ability to handle unseen novel situations,
as such situations frequently arise in real-world environments.
To facilitate the development of AI systems with those abilities,
researchers have developed testbeds with specialized tasks to
evaluate agents’ adaptation to novelty in physical environments.
In this paper, we propose a method for generating physics-
based tasks with incorporated novelties to assess agents’ novelty
adaptation capabilities. The tasks are defined as causal sequences
of physical interactions between objects, and novelties are strate-
gically introduced to disrupt existing causal relationships and
construct new ones. This approach ensures that agents must
adapt to the effects of novelties to perform those tasks, enabling
confident measurement of their novelty adaptation capabilities
using task performance. Moreover, our methodology eliminates
the need for manual task creation, unlike existing novelty-centric
testbeds. The proposed method is demonstrated and evaluated
using 12 physical scenarios in the Angry Birds domain. The evalu-
ated metrics include generation time, physical stability, intended
solvability, intended unsolvability, and accidental solvability of
the tasks, and they yielded favourable results compared to the
literature.

Index Terms—Novelty Generation, Physics-Based Tasks, Open-
World Learning, Physical Reasoning.

I. INTRODUCTION

THE physical reasoning capabilities of AI systems are
crucial for their successful operation in real-world en-

vironments. However, merely possessing the ability to reason
about physics is insufficient in dealing with the complexities
of the real world. In our daily lives, characterized by an open-
world environment, we frequently encounter novel situations
that have not been encountered before. Hence, it becomes
imperative for AI systems in open physical worlds to not only
possess physical reasoning capabilities but also the capacity
to handle novel situations effectively. Within the research
domains such as Open World Learning (OWL), efforts are
being made to equip AI systems with the necessary abilities
to adapt efficiently and proficiently to novel situations [1],
[2]. Moreover, researchers are developing testbeds to facilitate
the development, experimentation, and evaluation of these AI
systems [3], [4].

The concept of novelty for an AI agent entails a trans-
formation within the environment that influences the agent’s
understanding of the environment itself [2], [4]. When an AI
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agent encounters an unexpected change in the environment
it was trained on, it typically struggles to perform adequately.
Here we term the tasks that incorporate these novelties as novel
tasks, while tasks without any novelties as normal tasks. To
facilitate the development of AI systems capable of handling
novelties in physical environments, researchers have utilized
physics-simulating environments to construct testbeds encom-
passing both normal and novel tasks [3]. When evaluating an
AI system’s performance in the presence of novelties, it is
crucial that the novel tasks present meaningful challenges to
the AI, rather than merely acting as nuisances that can be dis-
regarded by the agent. To achieve this, we believe the novelty
should significantly impact the task’s solution, necessitating
the AI to adapt its actions accordingly. However, generating
such novel tasks automatically in physics-based environments
remains a challenge due to their inherent complexity. Despite
recent developments in this research area, there is a lack of
existing works focusing on the automatic generation of such
novel tasks.

This work introduces a procedural task generation method
designed to create physics-based tasks that incorporate nov-
elties. Our approach involves generating tasks in pairs, con-
sisting of both normal tasks and novel tasks, to align with the
standard OWL evaluation protocol [5]. We propose a system-
atic approach that extends a recently introduced physics-based
task-generation method, which defines physical scenarios as
causal sequences of physical interactions between objects
involved in the solution of the scenario [6]. Through the
introduction of novelties, the established causal interactions
in the normal task’s interaction sequence are disrupted, while
new causal interactions are constructed in the novel task’s in-
teraction sequence. This approach ensures that the introduced
novelties impact the task’s solution, thereby necessitating the
AI system to make appropriate adjustments in response. By
generating tasks that incorporate novelties in this manner, we
enable a robust evaluation of the AI system’s ability to adapt
to novel tasks.

In this study, we showcase the application of our approach
using the physics-based puzzle game, Angry Birds. The choice
of this game is driven by its widespread use in physical
reasoning [7], [8] and OWL research [9], [10], along with
its realistic physics simulation environment that aligns with
our objectives. We commence by providing an overview of
related work, situating our contribution within the existing
literature, and formulating the theory of designing tasks to
confidently evaluate agents’ novelty adaptation. Additionally,



IEEE TRANSACTIONS ON GAMES, VOL. X, NO. Y, Z 2023 2

we define the scope of novelties considered in this study.
Then, we discuss the causal sequence-based task-generation
method employed in this research and present our proposed
extensions to enable novelty-centric task generation in physical
environments. We then present the step-by-step process of
generating tasks as pairs of normal and novel tasks for a
given physical scenario. Lastly, we evaluate the generated
tasks using a comprehensive set of metrics. These metrics
encompass the assessment of the runtime of the generator, the
physical stability of the objects in the tasks, the solvability of
the tasks using intended solutions, the intended unsolvability
of the tasks using other solutions, the shift of the solution
between normal and novel tasks, and the accidental solvability
of the tasks using unintended solutions. Using the evaluation
results, we showcase the capabilities of our methodology in
generating sophisticated tasks that adhere to our design theory,
thus facilitating sound assessments of OWL AI systems.

II. RELATED WORK

In this section, we provide a comprehensive overview of
the relevant literature in the fields of physics-based task
generation, novelty-centric domains, and novelty generation.

A. Physics-Based Task Generation

Here we explore the two main research areas that exten-
sively focus on physics-based task generation: game content
development for physics-based video games and physical
reasoning benchmarks and testbeds.

In the realm of physics-based games, researchers have
extensively explored Angry Birds [11] and Cut the Rope
[12] for generating game content. Angry Birds, in particular,
has gained significant attention within the procedural content
generation research community and has been investigated
from various angles. These investigations have included the
development of techniques for generating physically stable
structures [13], converting hand-drawn sketches into stable
game levels [14], dynamically adjusting the difficulty of game
levels [15], generating deceptive levels for AI agents [16], and
utilizing prompt engineering to create prompts for generating
physically stable structures [17]. A recent and intriguing
approach to physics-based task generation, specifically for
Angry Birds, involves defining physical scenarios through
causal sequences of physical interactions between objects [6].
In this method, a scenario is defined by its solution, which is
represented as a sequence of physical interactions among the
objects involved. Tasks are generated based on this scenario
definition, adhering to the specified interaction sequence. This
approach’s significant advantage lies in well-defined tasks
using the underlying physics mechanics, enabling systematic
evaluations of AI systems’ physical reasoning capabilities
and identifying specific areas where agents may encounter
challenges using the generated tasks. Building upon these
advantages, our work adapts and extends this task generation
mechanism to incorporate novelties.

Physics-based benchmarks and testbeds have emerged as
crucial resources within the research community, serving as
tools for evaluating the physical reasoning capabilities of AI

agents. While those environments contain various types of
physical reasoning tasks based on images [18], videos [19]–
[21], and actions [7], [22]–[24], our work primarily aligns with
task creation methods in action-based environments. In action-
based environments, agents are required to take actions within
the physical environment to complete tasks successfully. Task
generation in such environments heavily relies on handcrafted
task templates created by developers. When generating tasks,
these templates undergo slight variations, such as altering
object positions or introducing distraction objects. However,
the manual creation of these task templates is a tedious
and labour-intensive process that demands domain expertise,
adherence to physics laws, ensuring stability under gravity, and
designing with enough flexibility for variations. In contrast,
our proposed methodology for the task generator relies on
a textual input that serves as the task definition, comprising
an intuitive sequence of physical interactions. This eliminates
the need for pre-created templates and allows for a more
streamlined and efficient task generation process. Furthermore,
this approach enables the systematic classification of tasks to
different physical scenarios based on their associated physical
interactions, facilitating more comprehensive evaluations of
agents across different classes of physical scenarios.

B. Novelty-Centric Domains and Novelty Generation

Novelty has been defined by researchers from various
perspectives. Some define it in terms of an agent’s model
of the external world, where novelties are situations that
violate implicit or explicit assumptions in an agent’s model
[1] or situations that surpass their cognitive capabilities based
on past experiences [25]. Others define it with respect to
the environment, viewing it as transformations of elements
within the environment [2]. To facilitate advancements in
OWL research, researchers have developed several novelty-
centric domains. These include GNOME [4], based on the
board game Monopoly, NovGrid [26] and NovelGridWorlds
[27], which are grid-based environments like MiniGrid [28],
and NovelCraft [29], based on Minecraft. Additionally, there
are physics-based novelty-centric domains such as CartPole
Novelty [30], which incorporates novelties into the CartPole
domain, and ScienceBirds Novelty [9], which introduces nov-
elties into Angry Birds.

For these novelty-centric domains, researchers have also
proposed various approaches for generating novelties [4],
[31]. For instance, a novelty generation framework specifically
designed for Angry Birds introduces a method to generate nov-
elties that can be ‘detected’ by AI agents [10]. In that frame-
work, users can define an objective of introducing novelty,
such as reducing the passing rate of a level by 5%, through
changes in the friction of a specific block type. The framework
employs an iterative generate and test approach, systematically
varying properties of novel objects and randomly placing
them within tasks until the novelty objective is achieved. The
primary focus of this framework is on generating detectable
novelties with no guarantee of adaptability to those novelties.
However, in the context of OWL, the emphasis is placed
more on novelty adaptation rather than mere detection [3].
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The ultimate expectation from a system is its ability to adapt
to novel situations rather than merely recognizing that there
is a novelty while failing to respond effectively. In our work,
we explicitly ensure the adaptability of the generated tasks and
ensure that the effect of the novelty has to be considered when
adapting (i.e., tasks with novelties must be solvable, and the
novelty’s effect must be considered in task-solving), allowing
us to conduct rigorous evaluations of AI agents’ capabilities
in handling novelties.

NovPhy [3] is a recently developed testbed that utilizes the
ScienceBirds Novelty framework. Similar to the objective of
generating tasks in our work, NovPhy aims to evaluate agents’
performance in physical reasoning tasks under the influence of
novelties. NovPhy consists of tasks for five physical reasoning
scenarios, such as rolling objects, falling objects, and sliding
objects. The testbed encompasses tasks created by combining
each physical scenario with eight novelties. Task generation in
NovPhy follows a template-based approach, similar to the one
in previously discussed physics-based testbeds, where a hand-
crafted template is modified by adjusting object positions and
adding new objects as distractions to generate new tasks. Due
to this template-based approach, the task generation method in
NovPhy also exhibits inefficiencies as discussed earlier. Our
approach eliminates the necessity of template implementation,
opting instead for a textual description of tasks using a defined
grammar. This shift not only reduces the manual labour
involved in implementing novelties and task templates but
also facilitates systematic agent evaluations as the physical
interactions involved in solving those tasks are well-defined
and known to the evaluator.

III. ANGRY BIRDS AND NOVELTY SCOPE

In this section, we discuss our test domain, Angry Birds,
and define the scope of novelties considered in our study.

A. Angry Birds

Fig. 1. The game objects in Angry Birds used in this study. The platform
objects may vary in size, while the remaining objects maintain a fixed size.
The brown-coloured blocks represent wood blocks, whereas the grey blocks
correspond to stone blocks. The stone blocks possess higher mass, increased
friction, and reduced bounciness compared to wood blocks. The blocks shown
as Other Distraction Blocks are those that are not directly involved in the
interactions required to solve the task. Instead, they serve as distractions for
the agents by being placed in the task space.

Angry Birds is a 2D physics-based game where players
aim to destroy pigs by launching a given number of birds

using a slingshot. Figure 1 depicts the game objects from
Angry Birds utilized in our study. A game level typically
comprises a slingshot, birds, blocks, pigs, and platforms. Birds,
blocks, and pigs are dynamic objects that follow Newtonian
physics principles. These objects also possess health points
that decrease upon collisions, leading to destruction when their
health points reach zero. On the other hand, platforms remain
static and are unaffected by external forces.

For our research, we utilize Science Birds [32], a research
clone of Angry Birds implemented in Unity, incorporating the
Box2D physics engine. To better showcase or methodology
for the original Angry Birds environment, minor adjustments
were made to the Science Birds framework to better align
its behaviour with that of the original game. The two most
impactful changes were a reduction in the object fragility by
increasing their health points and improved object dynamics
by fine-tuning various physics parameters. This ‘enhanced’
version of Science Birds can be downloaded at the following
link1, which includes a complete list of changes from the
original Science Birds.

B. Novelty Scope

The abundance of novelties that can be created in a phys-
ical environment is a result of the limitless diversity and
continuity present in the physical world. With an extensive
variety of objects, properties, interactions, and dynamics, the
potential for modifying or combining these elements knows
no bounds, leading to an infinite array of possible novelties.
For instance, one can introduce novelties by altering physical
properties such as mass or friction along a continuous spec-
trum, introducing novel objects with varying shapes and sizes,
or devising new interaction mechanisms between objects.
The sheer magnitude of possibilities renders it impractical
to exhaustively enumerate and study all novelties within a
physical environment. Consequently, in this study, we focus
on a limited set of intriguing novelties selected from this vast
expanse of possibilities.

In alignment with our focus on physical reasoning, our
examination is restricted to physics-based novelties, partic-
ularly those that apply forces to objects. This choice stems
from their realistic nature and frequent occurrence in physical
environments. For instance, within the NovPhy testbed, among
the eight introduced novelties, six entail the application of
forces. These include a Fan that applies horizontal forces to
objects, a Magnet with attraction and repulsion forces, an
Air Turbulence that exerts vertical forces on objects, and a
novelty that alters the gravitational force. In abstract form, we
consider four force-applying novelties: RightForce, LeftForce,
UpForce, and DownForce, which apply forces in the respective
directions of Right, Left, Up, and Down. In the context of a
task, these novelties can be positioned within the task space,
applying force in a specified region towards the specified
direction. To observe how these novelties are operationalized
in the tasks, refer to Figure 5, which illustrates some tasks
generated using the proposed methodology.

1https://github.com/ChathuraT/science birds novelty generator
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IV. THEORY FOR DESIGNING TASKS

In this section, we formulate the theory that we use to design
tasks in a physical environment, enabling us to confidently
evaluate the novelty adaptation capabilities of an AI agent. In
order to facilitate the discussion we define the below terms
first:

• A physical interaction is a dynamic engagement involv-
ing two or more objects within a physical environment.
It is characterized by tangible effects such as collisions,
applied forces, or any other physical engagement influ-
encing the behaviour of the involved objects.

• The causality between interactions represents the cause-
and-effect relationship within the dynamic engagements
among objects. It elucidates how the influence of one
interaction (cause) gives rise to subsequent interactions
(effect) within the physical environment.

• A physical scenario is a structured representation of a
physics-based environment, defined by a specific problem
or objective. It is characterized by the potential physical
interactions among objects within the environment that
are arranged in a sequence based on their causality, which
can lead to the solving of physical tasks derived from the
scenario.

• A physical task is a specific configuration of objects
within the physical environment, derived from a corre-
sponding physical scenario. It is solvable by adhering to
the sequence of causal physical interactions defined in its
scenario, leading to the solving of the scenario’s specified
problem or objective.

We refer to tasks without novelties as normal tasks and
tasks with novelties as novel tasks. In our study, we focus on
scenarios where only a single novelty is present in a novel task.
This aligns with the existing evaluation criteria in the state-
of-the-art OWL evaluation protocol [5]. To confidently assess
an agent’s adaptation to novelties in a physical environment,
we propose the following criteria:

1) The agent is first presented with a normal task, followed
by a novel task. This setup closely replicates real-
world situations where novelty unexpectedly emerges
in a familiar environment. This is also the standard
evaluation setting for agents in OWL research [5], which
has also been adapted in testbeds such as NovPhy [3].

2) The novel task should be created solely by introducing a
novelty to the normal task. This ensures that any change
in the task solution is purely a result of the effect of the
introduced novelty.

3) There must be a distinct change in the task solution when
transitioning from the normal task to the novel task. This
requires the agent to explicitly respond to the influence
of the introduced novelty, rather than simply ignoring it,
allowing for an accurate assessment of the agent’s adap-
tation capabilities based on task performance results.

Based on the above criteria, we deduce the following task
design requirements:

• Each physical scenario comprises a pair of tasks, a normal
task, and a novel task.

• For a physical scenario, two solutions are defined: one for
the normal task (Snor) and one for the novel task (Snov).

• The normal task and the novel task are identical, except
that the novel task includes a novelty.

• Snor and Snov must satisfy the following conditions:
– Snor and Snov are not identical.
– Snor works without the application of novelty but

becomes ineffective when novelty is applied.
– Snov is ineffective without the application of novelty

but works when novelty is applied.
We formulate the above requirements as our theory for

designing tasks for novelty adaptation evaluation in physics-
based environments as follows:

We define the solution of a task as a causal sequence of
physical interactions between the involved objects that lead to
task completion. A solution interaction sequence effectively
solves the task when the interactions unfold in the defined
order. The causal relationships between interactions adhere
to a temporal sequence, where the occurrence of each inter-
action triggers the subsequent interaction, and the preceding
interaction serves as the cause for the subsequent one. Let
Snor = i1, i2, i3, . . . , in represent the solution interaction
sequence for the normal task. Let Snov = i′1, i

′
2, i

′
3, . . . , i

′
n

represent the solution interaction sequence for the novel task.
The conditions for task design are as follows:

1) Snor ̸= Snov.
2) When novelty is not applied (i.e., in the normal task):

• ∀i ∈ Snor: the interaction i is functional and results
in successful task completion using Snor.

• ∃i′m, i′n ∈ Snov such that the causality between
i′m and i′n is disrupted, interrupting the interaction
sequence and hence preventing the normal task from
being solved using Snov.

3) When novelty is applied (i.e., in the novel task):
• ∀i′ ∈ Snov: the interaction i′ is functional and results

in successful task completion using Snov.
• ∃in, im ∈ Snor such that the causality between

in and im is disrupted, interrupting the interaction
sequence and hence preventing the novel task from
being solved using Snor.

4) A single novelty, applied to the novel task, should be ca-
pable of disrupting the causality between interactions in
and im, while simultaneously constructing the causality
between interactions i′n and i′m.

V. GRAMMAR AND DEFINING SCENARIOS

In this section, we present an existing grammar that can be
used to define physical scenarios and propose extensions to
this grammar to incorporate novelties into physical scenarios.
We then demonstrate how this grammar enables defining
physical scenarios with novelties, followed by defining a set
of sample scenarios for this study.

A. Grammar for Angry Birds

A grammar with four essential components has been pro-
posed in [6] to facilitate the description of objects, interactions,
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restricted interactions, and object layouts within a physical
environment. These grammar components are known as ob-
ject grammar, interaction grammar, restriction grammar, and
layout grammar, and they are detailed in Table I. The object,
interaction, and restriction grammars are used in defining
physical scenarios, while the layout grammar is used during
the generation process to establish constraints between objects
in the layout.

To effectively describe the effect of novelties, we propose
the addition of two new grammar components: disruption
grammar and construction grammar (Table II). In this work, we
consider two distinct ways that a novelty can impact causal
interactions between physical objects: by disrupting existing
causal interactions and by introducing new causal interactions.
These two grammar components, disruption grammar and
construction grammar, are designed to describe these effects.
The grammar terms are defined in accordance with the four
abstract novelties considered in this study: RightForce, Left-
Force, UpForce, and DownForce.

For example, a disruption term such as,
notOnRightForce([roll(obj1)(obj2)(right)])([fall(obj1)(obj3)])
represents that when there is a RightForce novelty,
object1 rolling on object2 to the right does not
cause object1 to fall onto object3. This indicates that
the causality between the rolling interaction and the
subsequent falling has been disrupted by the RightForce
novelty. On the other hand, a construction term such as
onRightForce([roll(obj1)(obj2)(right)])([hit(obj1)(obj3)(left)])
represents that when a RightForce novelty is present, object1
rolling on object2 to the right causes object1 to hit object3
from the left side. This indicates that the causality between
the rolling interaction and the subsequent hitting has been
constructed by the RightForce novelty.

B. Defining Scenarios

A physical scenario defined by the user using the above-
discussed grammar serves as the input to the proposed gen-
eration process in this work. As detailed in the theory of
task design in Section IV, each physical scenario consists
of a pair of tasks: a normal task and a novel task. Thus,
when defining a scenario, the user must devise two solution
sequences of physical interactions: one for normal tasks (Snor)
and the other for novel tasks (Snov). The object grammar and
interaction grammar presented earlier are utilized to define
these sequences of interactions between objects. Subsequently,
the restriction grammar is utilized to specify any constraints
relevant to the tasks, such as preventing one object from
hitting another. This is primarily done to prevent the tasks
from being solvable using alternative solutions rather than
the intended one, an idea discussed in the literature, as seen
in [33]. The newly introduced disruption and construction
grammar are then used to specify the impact of introducing
novelty on selected pairs of interactions. In Snor, the novelty
should disrupt the causality of a pair of interactions, rendering
Snor ineffective when the novelty is introduced. Conversely,
in Snov, the novelty should construct the causality of a pair
of interactions, enabling Snov, to become effective with the

TABLE I
GRAMMAR TERMS OF THE FOUR GRAMMAR COMPONENTS PROPOSED IN
[6]. THE PARAMETERS a AND b REPRESENT OBJECTS, d REPRESENTS A

DIRECTION, AND l REPRESENTS A LOCATION.

Object Grammar Game Objects Represented

bird redBird
pig pigSmall∨pigMedium
rollableBlock circleSmall∨circle
fallableBlock circleSmall∨circle∨squareHole∨triangleHole
slidableBlock squareHole∨triangleHole
horizontalSurface flatPlatform
inclinedSurface inclinedPlatform
surface flatPlatform∨inclinedPlatform

Interaction Grammar Description

hit(a)(b)(d) a collides with b from direction d of b
d ∈ D, D = {left, right, above, below, any}

roll(a)(b)(d) a rolls on b towards direction d
d ∈ D, D = {left, right}

fall(a)(b) a falls towards b
slide(a)(b)(d) a slides on b towards direction d

d ∈ D, D = {left, right}
bounce(a)(b)(d) a bounces off b towards direction d

d ∈ D, D = {left, right, above, below}
destroy(a)(b) a destroys b in the collision with b

Restriction Grammar Description

cannotHit(a)(b)(d) a cannot collide with b from direction d of b
d ∈ D, D = {left, right, above, below, any}

cannotFall(a) a cannot fall in its motion

Layout Grammar Description

inDirection(a)(b)(d) a is in direction d of b
d ∈ D, D = {left, right, above, below}

onLocation(a)(b)(l) a is on top of b at location l
l ∈ L, L = {left, centre, right}

locatedFar(a)(b)(d) a is located far from b in direction d of b
d ∈ D, D = {left, right, above, below}

touching(a)(b)(l) a is touching b at location l of b, l ∈ L
L = {upperLeft, centreLeft, lowerLeft}

pathObstructed(a)(b)(d) there is an obstacle in the path between
a and b, in the direction d to b
d ∈ D, D = {left, right, above, below, all}

liesOnPath(a)(b) a lies on b’s moving path

TABLE II
GRAMMAR TERMS FOR DISRUPTION AND CONSTRUCTION GRAMMARS
DESCRIBING IMPACTS TO CAUSAL INTERACTIONS. THE PARAMETERS p

AND q REPRESENT INTERACTIONS.

Disruption Grammar Description

notOnRightForce(p)(q) p does not cause q when a RightForce is present
notOnLeftForce(p)(q) p does not cause q when a LeftForce is present
notOnUpForce(p)(q) p does not cause q when an UpForce is present
notOnDownForce(p)(q) p does not cause q when a DownForce is present

Construction Grammar Description

onRightForce(p)(q) p causes q when a RightForce is present
onLeftForce(p)(q) p causes q when a LeftForce is present
onUpForce(p)(q) p causes q when an UpForce is present
onDownForce(p)(q) p causes q when a DownForce is present

introduction of the novelty. Table III illustrates 12 example
physical scenarios defined for demonstration purposes in this
study. The step-by-step process for defining a scenario is
outlined below using Scenario 1 from Table III as an example:

1) Begin by conceptualizing a scenario and identifying
the objects required, defining them using the object
grammar.
For example, in Scenario 1, we consider a scenario
where a bird must hit a rollable object placed on a
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surface, causing it to roll and subsequently hit and
destroy a pig. In this case, the objects required would
include a bird, a rollableBlock, a surface, and a pig.

2) Establish two potential solutions for the normal tasks
(Snor) and novel tasks (Snov). These solutions are rep-
resented as sequences of physical interactions between
the objects leading to the destruction of the pigs in
the task. Utilize the interaction grammar to define these
sequences, ordering them according to the causality of
the interactions.
In our example, Snor involves a bird hitting a rollable
block from the block’s left side, causing it to roll
to the right on an inclined surface. Subsequently, the
rollable block falls towards the pig, striking the pig
from above and leading to the pig’s destruction. In
Snov, the bird similarly hits the rollable block from the
block’s left side, resulting in it rolling to the right on a
horizontal surface and hitting the pig from the left side,
thereby causing the pig’s destruction. For the interaction
sequences written using the grammar for this example,
please refer to Scenario 1 in Table III.

3) Specify any interactions between objects that need to be
restricted using the restriction grammar.
In the example scenario, we aim to prevent the bird
from directly hitting the pig from any direction, thereby
ensuring that the task cannot be solved by directly
launching the bird at the pig instead of using the rollable
object to destroy the pig. To achieve this, we include the
restriction [cannotHit(bird)(pig)(any)].

4) Incorporate the effect of the novelty into the definitions.
Firstly, select a novelty intended to be introduced into
the scenario. Then, for Snor, identify two potential in-
teractions whose causality should be disrupted by the
novelty and define them using the disruption grammar.
Conversely, for Snov, identify two potential interactions
whose causality should be constructed by the same
novelty and define them using the construction grammar.
In the example, for Snor, it was determined that the
causality between the interactions of the rollable block
rolling and its falling can be disrupted when the Right-
Force novelty is introduced. Therefore, the disrup-
tion term [notOnRightForce([roll(..)(..)(..)])([fall(..)(..)])]
is added. Conversely, for Snov, the causality between
the interactions of the rollable block rolling and hitting
the pig potentially can be constructed only when a
RightForce novelty is applied. Thus, the construction
term [onRightForce([roll(..)(..)(..)])([hit(..)(..)(..)])] is in-
cluded.

As mentioned earlier, Table III showcases 12 example physical
scenarios defined for demonstration purposes. Scenarios five
through eight demonstrate four scenarios, each featuring one
of the four novelties applied to the same solution sequences.
Scenarios nine through twelve demonstrate the application
of novelties to disrupt and construct causalities of different
interactions within the same solution sequences. Please refer
to Figure 5 for the generated tasks corresponding to these
scenario definitions, providing a visualization of these scenario

definitions.

VI. TASK GENERATION PROCESS

The task generation process utilizes a defined scenario as
input and generates feasible tasks (i.e., game levels) that
can be solved using the interaction sequences defined in the
scenario. This process comprises two phases: a qualitative
phase followed by a simulation phase. During the qualitative
phase, the unbounded generative space is narrowed down
to a manageable limited space. Subsequently, guided by the
results of the qualitative phase, simulation-based techniques
are employed to precisely determine the layouts of objects. In
this section, we discuss these two phases.

A. Qualitative Phase

In the initial phase of the generation process, we utilize
the qualitative techniques discussed in [6]. Here, we provide
a brief overview of these qualitative techniques. For a more
comprehensive understanding, please refer to [6].

The process commences with a scenario definition as the
input, defined as the normal and novel solution sequences.
From the scenario definition, the necessary objects to be in-
cluded in the scenario are determined. Subsequently, the layout
constraints are inferred between these objects. The layout
constraints are defined using the layout grammar presented
in Table I, taking into account the interactions and restricted
interactions specified in the scenario definition. The layout
terms that can be inferred from the interaction and restriction
predicates are provided in Table IV. When inferring layout
constraints, redundant constraints between objects can be
inferred depending on the interaction and restriction predicates
present in the scenario definition. Therefore, such redundant
constraints are eliminated from the inferred layout constraints.
Additionally, the physical stability of the objects is tested by
checking that all dynamic objects are in a stable configuration,
with direct support from static objects underneath. If physi-
cally unsupported objects exist, new surfaces are introduced
below them to establish stability. This ensures that all dynamic
objects are initially placed in a stable configuration. Next,
these inferred layout constraints are represented as a layout
constraint graph among the objects. The layout constraint
graph for Scenario 1 in Table III is illustrated in Figure 2.

The next step involves converting the generated layout
constraint graph into a Qualitative Spatial Relationship (QSR)
graph. In this process, objects are represented using a 5-point
representation, utilizing the X and Y coordinates of their lower
left (ll), upper left (ul), centre (c), lower right (lr), and upper
right (ur) points. The layout constraint terms are then mapped
into different QSRs derived from various QSR calculi in the
2D Euclidean space. This mapping is detailed in Table V. We
exclude the layout terms pathObstructed and liesOnPath, as
they are handled in the simulation phase of the generation.
The resulting QSR relationships are represented as point rela-
tionships between the objects using the 5-point representation.
Notably, a single layout term can be mapped into multiple
QSRs, thereby allowing diversity in the generator’s output.
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TABLE III
DEFINITIONS OF THE EXAMPLE PHYSICAL SCENARIOS. A SCENARIO IS DEFINED USING TWO SOLUTION SEQUENCES OF PHYSICAL INTERACTIONS,

ONE FOR THE NORMAL TASK (SNOR ) AND THE OTHER FOR THE NOVEL TASK (SNOV ) (SHOWN IN THE FIRST LINE AND SECOND LINE, RESPECTIVELY). IN
THE DEFINITION, A SEQUENCE OF PHYSICAL INTERACTIONS (CAUSALITY DENOTED BY >, AND > REPRESENTS THE CAUSALITY THAT GETS AFFECTED

BY THE NOVELTY) IS FOLLOWED BY A SET OF RESTRICTIONS, AND SUBSEQUENTLY, EITHER A DISRUPTION (FOR THE NORMAL TASK) OR A
CONSTRUCTION (FOR THE NOVEL TASK) TERM. THE OBJECT GRAMMAR TERMS ROLLABLEBLOCK, FALLABLEBLOCK, SLIDABLEBLOCK,

HORIZONTALSURFACE, AND INCLINEDSURFACE ARE ABBREVIATED AS RBLOCK, FBLOCK, SBLOCK, HSURFACE, AND ISURFACE, RESPECTIVELY. FOR
OVERLOADED PARAMETER VALUES, ANY OF THE OVERLOADED VALUES CAN BE USED (E.G., HIT(bird)(fBlock)(left∨above) REPRESENTS THE BIRD

CAN COLLIDE WITH THE fBlock FROM left OR FROM above).

Scenario Scenario Definition

1

{[hit(bird)(rBlock1)(left)] > [roll(rBlock1)(iSurface)(right)] > [fall(rBlock1)(pig)] > [hit(rBlock1)(pig)(above)] > [destroy(rBlock1)(pig)]},
{[cannotHit(bird)(pig)(any)]}, {[notOnRightForce([roll(rBlock1)(iSurface)(right)])([fall(rBlock1)(pig)])]}

{[hit(bird)(rBlock2)(left)] > [roll(rBlock2)(hSurface)(right)] > [hit(rBlock2)(pig)(left)] > [destroy(rBlock2)(pig)]},
{[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock2)]}, {[onRightForce([roll(rBlock2)(hSurface)(right)])([hit(rBlock2)(pig)(left)])]}

2

{[hit(bird)(rBlock1)(left)] > [roll(rBlock1)(hSurface)(right)] > [hit(rBlock1)(pig)(left)] > [destroy(rBlock1)(pig)]},
{[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock1)]}, {[notOnDownForce([roll(rBlock1)(hSurface)(right)])([hit(rBlock1)(pig)(left)])]}

{[hit(bird)(rBlock2)(left)] > [roll(rBlock2)(iSurface)(right)] > [fall(rBlock2)(pig)] > [hit(rBlock2)(pig)(above)] > [destroy(rBlock2)(pig)]},
{[cannotHit(bird)(pig)(any)]}, {[onDownForce([roll(rBlock2)(iSurface)(right)])([fall(rBlock2)(pig)])]}

3

{[hit(bird)(sBlock1)(left)] > [slide(sBlock1)(iSurface)(right)] > [fall(sBlock1)(pig)] > [hit(sBlock1)(pig)(above)] > [destroy(sBlock1)(pig)]},
{[cannotHit(bird)(pig)(any)]}, {[notOnRightForce([slide(sBlock1)(iSurface)(right)])([fall(sBlock1)(pig)])]}

{[hit(bird)(sBlock2)(left)] > [slide(sBlock2)(hSurface)(right)] > [hit(sBlock2)(pig)(left)] > [destroy(sBlock2)(pig)]},
{[cannotHit(bird)(pig)(any)]∧[cannotFall(sBlock2)]}, {[onRightForce([slide(sBlock2)(hSurface)(right)])([hit(sBlock2)(pig)(left)])]}

4

{[hit(bird)(sBlock1)(left)] > [slide(sBlock1)(hSurface)(right)] > [hit(sBlock1)(pig)(left)] > [destroy(sBlock1)(pig)]},
{[cannotHit(bird)(pig)(any)]∧[cannotFall(sBlock1)]}, {[notOnDownForce([slide(sBlock1)(hSurface)(right)])([hit(sBlock1)(pig)(left)])]}

{[hit(bird)(sBlock2)(left)] > [slide(sBlock2)(iSurface)(right)] > [fall(sBlock2)(pig)] > [hit(sBlock2)(pig)(above)] > [destroy(sBlock2)(pig)]},
{[cannotHit(bird)(pig)(any)]}, {[onDownForce([slide(sBlock2)(iSurface)(right)])([fall(sBlock2)(pig)])]}

5

{[hit(bird)(fBlock1)(left∨above)] > [fall(fBlock1)(pig)] > [hit(fBlock1)(pig)(above)] > [destroy(fBlock1)(pig)]}, {[cannotHit(bird)(pig)(any)]},
{[notOnRightForce([fall(fBlock1)(pig)])([hit(fBlock)(pig)(above)])]}

{[hit(bird)(fBlock2)(left∨above)] > [fall(fBlock2)(pig)] > [hit(fBlock2)(pig)(above)] > [destroy(fBlock2)(pig)]}, {[cannotHit(bird)(pig)(any)]}
{[onRightForce([fall(fBlock2)(pig)])([hit(fBlock2)(pig)(above)])]}

6

{[hit(bird)(fBlock1)(left∨above)] > [fall(fBlock1)(pig)] > [hit(fBlock1)(pig)(above)] > [destroy(fBlock1)(pig)]}, {[cannotHit(bird)(pig)(any)]},
{[notOnDownForce([fall(fBlock1)(pig)])([hit(fBlock)(pig)(above)])]}

{[hit(bird)(fBlock2)(left∨above)] > [fall(fBlock2)(pig)] > [hit(fBlock2)(pig)(above)] > [destroy(fBlock2)(pig)]}, {[cannotHit(bird)(pig)(any)]}
{[onDownForce([fall(fBlock2)(pig)])([hit(fBlock2)(pig)(above)])]}

7

{[hit(bird)(fBlock1)(left∨above)] > [fall(fBlock1)(pig)] > [hit(fBlock1)(pig)(above)] > [destroy(fBlock1)(pig)]}, {[cannotHit(bird)(pig)(any)]},
{[notOnUpForce([fall(fBlock1)(pig)])([hit(fBlock)(pig)(above)])]}

{[hit(bird)(fBlock2)(left∨above)] > [fall(fBlock2)(pig)] > [hit(fBlock2)(pig)(above)] > [destroy(fBlock2)(pig)]}, {[cannotHit(bird)(pig)(any)]}
{[onUpForce([fall(fBlock2)(pig)])([hit(fBlock2)(pig)(above)])]}

8

{[hit(bird)(fBlock1)(left∨above)] > [fall(fBlock1)(pig)] > [hit(fBlock1)(pig)(above)] > [destroy(fBlock1)(pig)]}, {[cannotHit(bird)(pig)(any)]},
{[notOnLeftForce([fall(fBlock1)(pig)])([hit(fBlock)(pig)(above)])]}

{[hit(bird)(fBlock2)(left∨above)] > [fall(fBlock2)(pig)] > [hit(fBlock2)(pig)(above)] > [destroy(fBlock2)(pig)]}, {[cannotHit(bird)(pig)(any)]}
{[onLeftForce([fall(fBlock2)(pig)])([hit(fBlock2)(pig)(above)])]}

9

{[hit(bird)(rBlock1)(left)] > [roll(rBlock1)(surface1)(right)] > [hit(rBlock1)(fBlock1)(left)] > [fall(fBlock1)(pig)] > [hit(fBlock1)(pig)(above)] >
[destroy(fBlock1)(pig)]}, {[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock1)]}, {[notOnRightForce([roll(rBlock1)(surface1)(right)])([hit(rBlock1)(fBlock1)(left)])]}

{[hit(bird)(rBlock2)(left)] > [roll(rBlock2)(surface2)(right)] > [hit(rBlock2)(fBlock2)(left)] > [fall(fBlock2)(pig)] > [hit(fBlock2)(pig)(above)] >
[destroy(fBlock2)(pig)]}, {[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock2)]}, {[onRightForce([roll(rBlock2)(surface2)(right)])([hit(rBlock2)(fBlock2)(left)])]}

10

{[hit(bird)(rBlock1)(left)] > [roll(rBlock1)(surface1)(right)] > [hit(rBlock1)(fBlock1)(left)] > [fall(fBlock1)(pig)] > [hit(fBlock1)(pig)(above)] >
[destroy(fBlock1)(pig)]}, {[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock1)]}, {[notOnDowntForce([roll(rBlock1)(surface1)(right)])([hit(rBlock1)(fBlock1)(left)])]}

{[hit(bird)(rBlock2)(left)] > [roll(rBlock2)(surface2)(right)] > [hit(rBlock2)(fBlock2)(left)] > [fall(fBlock2)(pig)] > [hit(fBlock2)(pig)(above)] >
[destroy(fBlock2)(pig)]}, {[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock2)]}, {[onDownForce([roll(rBlock2)(surface2)(right)])([hit(rBlock2)(fBlock2)(left)])]}

11

{[hit(bird)(rBlock1)(left)] > [roll(rBlock1)(surface1)(right)] > [hit(rBlock1)(fBlock1)(left)] > [fall(fBlock1)(pig)] > [hit(fBlock1)(pig)(above)] >
[destroy(fBlock1)(pig)]}, {[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock1)]}, {[notOnLeftForce([fall(fBlock1)(pig)])([hit(fBlock1)(pig)(above)])]}

{[hit(bird)(rBlock2)(left)] > [roll(rBlock2)(surface2)(right)] > [hit(rBlock2)(fBlock2)(left)] > [fall(fBlock2)(pig)] > [hit(fBlock2)(pig)(above)] >
[destroy(fBlock2)(pig)]}, {[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock2)]}, {[onLeftForce([fall(fBlock2)(pig)])([hit(fBlock2)(pig)(above)])]}

12

{[hit(bird)(rBlock1)(left)] > [roll(rBlock1)(surface1)(right)] > [hit(rBlock1)(fBlock1)(left)] > [fall(fBlock1)(pig)] > [hit(fBlock1)(pig)(above)] >
[destroy(fBlock1)(pig)]}, {[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock1)]}, {[notOnUpForce([fall(fBlock1)(pig)])([hit(fBlock1)(pig)(above)])]}

{[hit(bird)(rBlock2)(left)] > [roll(rBlock2)(surface2)(right)] > [hit(rBlock2)(fBlock2)(left)] > [fall(fBlock2)(pig)] > [hit(fBlock2)(pig)(above)] >
[destroy(fBlock2)(pig)]}, {[cannotHit(bird)(pig)(any)]∧[cannotFall(rBlock2)]}, {[onUpForce([fall(fBlock2)(pig)])([hit(fBlock2)(pig)(above)])]}

Additionally, the generator can overload each grammar term
when defining scenarios, as exemplified in scenario six where
the bird can hit the fBlock from either the left side or above.
This capacity for choice enhances the generator’s ability to

produce a wide range of tasks. The QSR graph corresponding
to scenario 1, derived from its layout constraint graph, is
illustrated in Figure 3.

In the concluding step of the qualitative phase, the con-
structed QSR graph is examined to ensure its consistency,
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TABLE IV
THE LAYOUT CONSTRAINTS THAT CAN BE INFERRED FROM THE

INTERACTIONS AND RESTRICTIONS PROPOSED IN [6]. THE PARAMETER
-d REPRESENTS THE OPPOSITE DIRECTION OF d. IN THE TERM

CANNOTFALL(a), p, q, AND SO ON ARE USED TO DENOTE THE OBJECTS
OVER WHICH a MOVES IN THE SPECIFIED ORDER, WHILE lp, lq, AND SO

ON INDICATE THE LOCATIONS WHERE THOSE OBJECTS ARE
CONNECTED, CREATING A CONTINUOUS PATH FOR a TO FOLLOW.

Interactions/Restrictions Predicate Inferred Layout Constraints

hit(a)(b)(d) liesOnPath(b)(a)∧inDirection(b)(a)(-d)
roll(a)(b)(d) inDirection(a)(b)(-d)
fall(a)(b)(d) locatedFar(a)(b)(d)
slide(a)(b)(d) inDirection(a)(b)(-d)
bounce(a)(b)(d) inDirection(a)(b)(d)
cannotHit(a)(b)(d) pathObstructed(a)(b)(d)
cannotFall(a) touching(a)(p)(lp)∧touching(p)(q)(lq), ...

TABLE V
THE QUALITATIVE SPATIAL RELATIONSHIPS INFERRED FROM THE

LAYOUT CONSTRAINTS PROPOSED IN [6]. THE ABBREVIATED
REPRESENTATION OF THE DIRECTIONS IN THE NOTATION FOLLOWS

CONVENTIONAL CONVENTIONS.

Layout Predicate Inferred QSRs

inDirection(a)(b)(left) W(a,b)∨NW(a,b)∨SW(a,b)
inDirection(a)(b)(right) E(a,b)∨NE(a,b)∨SE(a,b)
inDirection(a)(b)(above) N(a,b)∨NE(a,b)∨NW(a,b)
inDirection(a)(b)(below) S(a,b)∨SE(a,b)∨SW(a,b)

onLocation(a)(b)(left) MeetDuringW(a,b)
onLocation(a)(b)(centre) MeetN(a,b)
onLocation(a)(b)(right) MeetDuringE(a,b)

locatedFar(a)(b)(left) FarW(a,b)∨FarNW(a,b)∨FarSW(a,b)
locatedFar(a)(b)(right) FarE(a,b)∨FarNE(a,b)∨FarSE(a,b)
locatedFar(a)(b)(above) FarN(a,b)∨FarNE(a,b)∨FarNW(a,b)
locatedFar(a)(b)(below) FarS(a,b)∨FarSE(a,b)∨FarSW(a,b)

touching(a)(b)(upperLeft) MeetNW(a,b)
touching(a)(b)(centreLeft) MeetW(a,b)
touching(a)(b)(lowerLeft) MeetSW(a,b)

Fig. 2. The layout constraint graph of scenario one. Blue nodes represent
objects defined in the scenario definition, and grey nodes represent objects
introduced to maintain object stability under gravity. Green edges represent
layout constraints inferred from interactions, while orange edges represent
constraints inferred from restrictions defined in the scenario.

thereby verifying the existence of feasible spatial layouts
for all objects. To accomplish this, a dimension graph-based
approach is employed [34], wherein point-based constraints
are projected independently into the X and Y dimensions, pro-
ducing a pair of dimension graphs - one for the X dimension
and another for the Y dimension. This approach effectively
transforms the task of consistency checking into a graph cycle
detection problem. If both the X and Y dimension graphs,
based on a given set of spatial constraints, are free of cycles,

Fig. 3. The qualitative spatial relationship (QSR) graph of scenario one.
Nodes represent objects, and edges represent QSR relationships. A directed
edge from node a to b with a relationship y denotes that ‘a is in y of b’. For
connections with multiple relationships (represented with ∨), any relationship
out of them can be considered.

it signifies that generating a feasible layout for the objects that
satisfies the constraints is possible. As mentioned earlier, the
presence of choices in selecting QSR relations between objects
allows for the generation of a pool of feasible dimension graph
pairs for a given scenario, each representing a plausible layout
that satisfies the specified constraints.

B. Simulation Phase

In physics-based environments, using qualitative methods
alone may not fully capture the complexities imposed by
physics, such as object motion and destruction. Therefore,
simulation-based techniques have frequently been employed
by researchers for generating content in such environments
[16]. In the second phase of our task generation process,
simulation-based techniques are used to obtain additional
information, particularly to determine object trajectory paths
(to satisfy the liesOnPath terms) and to verify task solvability
with different actions. The steps of this phase are illustrated in
Figure 4. Starting with a pool of dimension graphs obtained
from the qualitative phase, the final outcome is a feasible pair
of normal and novel tasks for the input scenario that adhere
to our task design theory.

Initially, a pair of dimension graphs (representing X and Y
dimensions) is randomly selected from the pool of dimen-
sion graph pairs. Subsequently, the point-based constraints
represented by these dimension graphs are resolved using
the standard forward-checking technique [35] employed in
solving constraint satisfaction problems, resulting in the initial
positions of the game objects. Finally, the game objects are
positioned in the level space according to these determined
positions.

The subsequent step involves configuring and instantiating
the novelty. The specific novelty to be used is determined by
referencing the disruption/construction terms in the scenario
definition, which are directly associated with the intended
novelty. The novelty is then adjusted in size and positioned ap-
propriately within the level space, ensuring it lies between the
two interactions to be disrupted in Snor and the two interactions
to be constructed in Snov. If the current layout does not permit
such placement of the novelty, the objects associated with one
solution are shifted until a layout accommodating the desired
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Fig. 4. Simulation phase steps of the generation process.

novelty placement is achieved. In this study, force-applying
novelties are considered, and a default force magnitude is
assigned to them. Then the novelty game object is instantiated
in the game space with the determined size, position, and
default force magnitude.

Following that, the liesOnPath terms pertaining to the Snov
interactions are addressed. This involves taking the action that
triggers the Snov interaction sequence, where the bird is shot
at the object initiating the sequence. The trajectories of the
objects associated with the liesOnPath terms are then observed.
As Angry Birds offers a continuous range of shooting angles,
we discretize the possible action space by considering only
specific points of interest on the target object (e.g., ll, ur, and
c) and simulating the shooting towards these points. To satisfy
liesOnPath(a)(b), we adjust the position of the object a to
a position that mostly intersects the trajectory of b for the
tested shooting points. If satisfaction for liesOnPath cannot be
achieved in this manner, particularly for the liesOnPath terms
associated with objects influenced by the novelty, we system-

atically retry after reconfiguring the novelty (size, placement
and force magnitude).

Next, the liesOnPath terms related to the Snor interactions
are satisfied. First, the introduced novelty is removed from
the task. The process is similar to the one used for satisfying
the liesOnPath terms associated with the Snov interactions,
involving simulating the action that initiates the Snov inter-
action sequence, followed by observing and repositioning the
relevant objects. After this step, we verify that the object layout
still adheres to the spatial constraints established during the
qualitative phase, guaranteeing that the layout facilitates the
intended initial interactions. In the event that the liesOnPath
constraints are not satisfied, or if QSR constraints are violated
in the current layout, the simulation phase is reset by choosing
a different pair of dimension graphs.

The next step involves satisfying the pathsObstructed terms
by introducing platforms that obstruct the paths to the cor-
responding objects. Careful consideration is given to ensure
that these obstacles do not interfere with the trajectories of
other objects, which could disrupt the solution interactions of
the task. Additionally, drawing inspiration from tasks used for
evaluating AI agent performance in benchmarks [3], [7], we
introduce a random number of superfluous objects at various
locations to serve as distractions for the AI agents. We ensure
that these added distractions do not alter the solution inter-
action sequence of the tasks. These distractions are intended
to reduce the likelihood of agents exploiting spurious patterns
instead of engaging in genuine physical reasoning and novelty
adaptation.

Subsequently, normal and novel tasks are obtained. The
task without the novelty, which is the current task at hand
in the generation process, is the normal task. The novel task
is obtained by incorporating the novelty into the normal task
according to the previously determined configurations of the
novelty. A final verification is then performed to ensure that
these tasks are solvable using their intended solutions (i.e.,
the normal task by Snor and the novel task by Snov) while
being unsolvable using their counterpart solutions. This veri-
fication entails simulating the bird’s shooting action towards
the intended target object, which is expected to instantiate the
corresponding interaction sequence. The successfully verified
tasks are then produced as the normal and novel task pairs of
the input physical scenario.

VII. RESULTS AND EVALUATIONS

In this section, we present the results of our proposed
method and the evaluations conducted to measure its per-
formance and adherence to our task design theory. Example
generated tasks for the 12 physical scenarios considered in
this work are shown in Figure 5, while Figure 6 demon-
strates the variations of the tasks generated for a specific
scenario, scenario 1. The limited variations observed in the
tasks generated for the same scenario are in line with the task
variations typically used in existing literature for assessing
’local generalization’ in AI agents, such as in PHYRE [23]
and Phy-Q [7]. While variations in the tasks in those works
are often achieved by simple shifts in object locations, our
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6 (g) Scenario 7 (h) Scenario 8

(i) Scenario 9 (j) Scenario 10 (k) Scenario 11 (l) Scenario 12
Fig. 5. Generated tasks for the defined example scenarios. Each subfigure includes the normal task (top) and the novel task (bottom). The RightForce,
LeftForce, UpForce, and DownForce novelties are represented as brown, green, blue, and pink rectangles in the novel tasks, and their corresponding force is
applied when an object is inside the novelty. Blue and red dotted arrows illustrate the object trajectories when Snor and Snov solutions are initiated, respectively.

approach expands this by incorporating changes in relative
object positions, object materials, object sizes, and object
types, providing a more diverse evaluation of AI agents’ local
generalization capabilities. Additionally, to promote ’broad
generalization’, our generation facilitates setups such as train-
ing agents on various scenarios with different interactions

and subsequently evaluating them on different scenarios that
exclusively feature interactions encountered during training,
ensuring comprehensive learning and testing opportunities for
the agents.

To evaluate the presented task generation methodology, we
propose six metrics: generation time, physical stability of the
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(a) (b) (c) (d)
Fig. 6. Four tasks generated for scenario one. Each subfigure includes the normal task (top) and the novel task (bottom). Blue and red dotted arrows illustrate
the object trajectories when Snor and Snov solutions are initiated, respectively.

Fig. 7. The results of the intended solvability, intended unsolvability, solution
switch, and accidental solvability evaluations for the 12 scenarios.

tasks, solvability of the tasks using the intended solutions,
intended unsolvability of the tasks using other solutions, the
satisfaction of solution switch from normal task to novel
task, and accidental solvability of the tasks using unintended
solutions. To evaluate the method, we generated 30 task pairs
(normal and novel) for each of the 12 scenarios, totalling 360
task pairs.

A. Generation Time

To compare the efficiency of our task generator, we evalu-
ated its runtime on a Windows 10 desktop equipped with an i9-
9900KS CPU and 64GB RAM. The average time taken to gen-
erate a task pair for the 12 scenarios considered in this study
was 12.92 seconds. In comparison, the physics-based task
generation method presented in [6] consumed an average of
3.01 seconds to generate a task using the same infrastructure.
It is important to note that the method in [6] only generates
normal tasks without novelties, and each task contains a single
sequence of interactions. In contrast, our approach considers
two sequences of interactions, generates a feasible novelty in
the process, and the measured time is for producing a pair
of tasks. Furthermore, the domain-independent novelty gen-
eration method proposed in [31] requires approximately four

hours to generate a feasible novelty. This result highlights the
efficiency of our approach in producing tasks with novelties
while maintaining a reasonable runtime.

B. Physical Stability

In the context of Angry Birds, as well as other prevalent
physics-based testbeds such as [7], [22], [23], it is essential
for all objects within a task to be stable under gravity at the
outset. In this evaluation, we examined the physical stability of
the generated tasks. Our generation process adheres to strict
stability checks, ensuring that all objects are validated and
stabilized under gravity during the generation of the layout
constraint graph. Additionally, when introducing distraction
objects, they are placed only in locations that can support
their stability. Consequently, all tasks generated through our
approach exhibited stable configurations under gravity at the
beginning of each task.

C. Intended Solvability

To assess the intended solvability of the generated tasks,
we evaluate their solvability using the defined sequence of
physical interactions in the scenario definition. At the genera-
tion time, we record the action, which is the release angle of
the bird, that initiates the solution interactions for each task.
Subsequently, this action is executed during this evaluation
process to verify the solvability of the tasks. A task pair is
deemed solvable if the normal task can be solved using Snor,
and the novel task can be solved using Snov. To obtain the
intended solvability rate for a specific scenario, we calculate
the percentage of solvable task pairs within that scenario. It
is worth noting that we omit the final solvability verification
step in the generation process for the tasks generated for this
evaluation, as this step prevents the output of unsolvable tasks.
Our main objective here is to assess how frequently the process
can produce solvable tasks. The results, presented in Figure
7, illustrate that the intended solvability rate exceeds 81% for
all the 12 example scenarios.
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D. Intended Unsolvability

To gauge the intended unsolvability of the generated tasks,
in contrast to the intended solvability measure, we examine
the tasks’ solvability using their counterpart solution. In other
words, a task pair is considered to meet the intended unsolv-
ability criterion if the normal task cannot be solved using Snov,
and the novel task cannot be solved using Snor. To determine
the intended unsolvability rate for a specific scenario, we
calculate the percentage of task pairs within that scenario that
adhere to this condition. Similar to the preceding evaluation,
the final verification step is excluded for the tasks used in this
assessment, as that verification screens out task pairs that do
not meet this criterion. The results, depicted in Figure 7, show
that the intended unsolvability rate surpasses 86% for all the
12 example scenarios. Additionally, a general trend is observed
where an increase in intended unsolvability corresponds to a
decrease in intended solvability.

E. Solution Switch

An essential criterion in our task designing theory is to
ensure that there is a distinct change in the solution be-
tween normal and novel tasks. This is necessary to prevent
agents from utilizing the same solution for both tasks. To
quantitatively assess the extent to which this criterion is met,
we introduce the solution switch measure. This measure is
satisfied by task pairs that fulfil both the above-discussed
intended solvability and intended unsolvability measures. The
solution switch rates across all scenarios are presented in
Figure 7 and show that the solution switch rate ranges from
79% to 86% across the considered scenarios.

F. Accidental Solvability

In a continuous physical environment with unlimited ac-
tions, the possibility of unintended and unforeseen actions
solving the tasks is a concern, as agents may exploit such
actions during task-solving, compromising the reliability of
conclusions drawn from agents’ performance. Hence, it is
crucial to assess the tasks’ quality regarding their vulnerability
to unintended solutions. To achieve this, we employ a brute-
force strategy utilized by typical Angry Birds playing agents,
systematically shooting at all blocks [11]. We exclude shooting
at the block that initiates the solution interaction sequence of
the task. Similarly to how it is done in [6], the accidental
solvability rate (ASi) is calculated by,

ASi =
1

Ni

∑Ni

n=1

1

Pn

∑Pn

p=1(Snp) (1)

where Ni is the total number of tasks tested in scenario i,
Pn is the total number of plays used to test the nth task in
scenario i, and Snp is a binary variable that is 1 if the nth level
in scenario i is solved by the pth strategy, and 0 otherwise.
During this experiment, the value of Pn was observed to
fall within the interval of 6 to 13, with a mean of 8. The
value of ASi falls within the range of 0 to 1, and a higher
value signifies a greater susceptibility to accidental solutions.
The results presented in Figure 7 demonstrate that ASi varies
within the range of 6% (±2 SD) to 12% (±4 SD) across the

12 scenarios. This range is comparable to the findings of tasks
generated in [6], which exhibited a range of 3% (±1 SD) to
12% (±5 SD).

In summary, our evaluation satisfactorily demonstrates the
effectiveness of our proposed approach for generating tasks
that require novelty adaptation capabilities to solve. The
presented results affirm that the generated tasks possess the
desired attributes of solvability and unsolvability through their
designated solutions, demonstrating their alignment with our
original task design theory. Moreover, the observed low value
in accidental solvability, akin to existing literature, underscores
the tasks’ resilience against arbitrary solutions. Lastly, our
approach can guarantee the physical stability of the generated
tasks, as well as generate them in a timely manner. Col-
lectively, the results across these evaluation metrics provide
strong evidence that the proposed methodology effectively
attains our targeted performance objectives.

VIII. CONCLUSION AND FUTURE WORK

In this study, we presented a procedural generation method
for creating tasks with novelties in physics-based environments
aimed at enabling a robust evaluation of AI agents’ novelty
adaptation capabilities. This approach involves systematically
defining physics-based scenarios by specifying causal se-
quences of physical interactions between objects and intro-
ducing novelties that both disrupt existing causal interactions
and construct new ones. We developed a theory for designing
tasks that facilitated a robust evaluation of novelty adaptation
capabilities and extended an existing grammar to incorporate
novelties into physical scenario definitions. The generation
process consists of a qualitative phase to restrict the generative
space and a simulation phase to configure precise layouts and
novelties. Our comprehensive metric-based evaluation verified
the effectiveness of our proposed methodology for 12 example
scenarios.

For future work, we envision exploring the applicability of
this approach to other types of novelties beyond force-applying
novelties, such as changes in the physical properties of objects
or temporal-based novelties. Moreover, our approach can be
readily applied to other physics-based domains similar to
Angry Birds [22], [23], [36], where agents make single, one-
time actions. Additionally, the applicability of our method to
more complex physical environments, where agents interact
continuously with the environment, can be explored [37].
Overall, this research paves the way for the systematic genera-
tion of physics-based novel tasks, offering a more efficient al-
ternative to manual approaches. The generated tasks facilitate a
comprehensive assessment of agents’ novelty adaptation skills
while providing insights into the nuanced physics mechanics
that govern both novelty adaptation and task completion. We
believe that these tasks will contribute to the advancement
of AI agents with enhanced novelty adaptation capabilities in
physical environments.
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