
Procedural Generation of Complex Stable
Structures for Angry Birds Levels

Matthew Stephenson
Research School of Computer Science

Australian National University
Canberra, Australia

matthew.stephenson@anu.edu.au

Jochen Renz
Research School of Computer Science

Australian National University
Canberra, Australia

jochen.renz@anu.edu.au

Abstract—This paper presents a procedural content generation
algorithm for the physics-based puzzle game Angry Birds. The
proposed algorithm creates complex stable structures using a
variety of 2D objects. These are generated without the aid of
pre-defined substructures or composite elements. The structures
created are evaluated based on a fitness function which considers
several important structural aspects. The results of this analysis
in turn affects the likelihood of particular objects being chosen in
future generations. Experiments were conducted on the generated
structures in order to evaluate the algorithm’s expressivity. The
results show that the proposed method can generate a wide
variety of 2D structures with different attributes and sizes.

I. INTRODUCTION

Procedural content generation (PCG) is a major area of
investigation within the video game industry [1]. It is typically
defined as the automatic creation of aspects of a game which
affect gameplay other than non-player characters (NPCs) and
the game engine [2]. PCG is commonly used to create new
unique experiences for players without the need to design
every possibility manually. This can dramatically cut a game’s
development time, as well as increasing available content and
reducing memory consumption [3]. PCG can also be used to
learn about the player’s abilities and adapt the game’s content
accordingly [4].

Previous research has investigated the use of PCG for
many different types of game content, including vehicles
[5], weapons [6] and rulesets [7]. Level generation, or the
generation of certain level aspects, is one of the most popular
uses of PCG and has been implemented in many different
game types. These include real-time strategy games [8], role-
playing games [9], platform games [10], racing games [11]
and arcade games [12].

Physics-based puzzle games such as Angry Birds, Bad
Piggies, Crayon Physics and World of Goo have increased
in popularity in recent years and provide many interesting
challenges for PCG. However, as far as we can tell, very little
research has been done on this particular area of PCG. A small
collection of studies have explored PCG for the physics-based
game Cut the Rope [13], [14], as well as the popular mobile
game Angry Birds [15], [16], [17].

Physics-based games make PCG more difficult for a variety
of reasons. Firstly, there are typically many constraints that
dictate the types of content that can be created. Any PCG

algorithm must be aware of the physical limitations of its
environment and create content that functions as expected, e.g.
a procedurally generated car must be able to drive and steer.
Secondly, the state and action spaces are typically very large.
This makes the task of determining if a procedurally generated
level can be completed extremely difficult, especially for
increasingly complex levels and content. Lastly, the variety of
content that the algorithm can create must not be significantly
reduced by any constraints imposed. The main appeal of PCG
is that a large and diverse range of content can be created.
Designing algorithms with restrictions that are unnecessarily
strict will severally limit its PCG capabilities.

Previous research into PCG for Angry Birds has been rather
basic in terms of the complexity of the structures they generate.
These prior methods create Angry Birds levels by generating
columns of either single objects or small predefined structures
[16]. These columns are then recombined using simple genetic
algorithms in an attempt to maximize structural stability [15],
[17]. Whilst this method is suitable for creating primitive
structures in Angry Birds levels, it cannot generate anything
more complex than an array of single columns.

This paper presents a search-based procedural content gen-
erator for the Angry Birds game which can create complex
stable structures using a variety of different objects. The
structures are evaluated using an improved fitness function
which measures various important aspects. These include
the structure’s block count, pig count, aspect-ratio and pig
dispersion. The probability of selecting certain block types
during the construction process is evolved over successive
generations, using this function as the optimisation criterion.

Several experiments were conducted to analyze the expres-
sivity and of the structure generator. Metrics such as frequency,
linearity, density and leniency were calculated to describe the
characteristics of the content generated.

II. ANGRY BIRDS

Angry Birds is a physics-based puzzle game where the
player uses a slingshot to shoot birds at structures composed of
blocks, with pigs placed within or around them. The player’s
objective is to kill all the pigs using the birds provided. A
typical Angry Birds level, as shown in Figure 1, contains a
slingshot, birds, pigs and a collection of blocks arranged in

Fig. 1: Screenshot of a level from the Angry Birds game.

Fig. 2: The thirteen different block types available.

one or more structures. The ground is usually flat but can vary
in height for certain difficult levels. Each block in the game
can have multiple different shapes as well as being made of
several possible materials.

Angry Birds is a commercial game developed by Rovio
Entertainment who do not provide an open-source version
of their code. Instead we use a Unity-based clone of the
Angry Birds game developed by Lucas Ferreira [15], which
is open-source and available to download from GitHub. This
clone provides many of the necessary elements to simulate
our procedurally generated structures in a realistic physics
environment. There are currently eight different rectangular
blocks available, of which five can be rotated ninety degrees to
create a new block type. This gives a total of thirteen different
block variants with which to build our structure, see Figure 2.
Each block is also assigned one of three materials (wood, ice
or stone), bringing the number of possible options to thirty
nine.

III. PROCEDURAL STRUCTURE GENERATION

The proposed structure generator operates by recursively
adding rows of blocks to the bottom of the already generated
structure. This process continues until a desired number of
rows are reached. Unlike previous methods, our structure is
created using only the original block types and does not require
any composite elements to be created prior to structure gener-
ation. This vastly increases the number of possible structures
that can be constructed, whilst also allowing greater algorithm
flexibility to satisfy conditions and restrictions which may
be imposed. The complexity of a generated structure can be
defined in a manner similar to that of Kolmogorov complexity
[18]. The extensive amount of variation that can occur within
each structure, including the number, size, orientation and

Algorithm 1 Structure Generation
1: currentRow ← 1
2: blockType← SelectBlockType(probabilityTable)
3: currentStructure← InitializeF irstRow(blockType)
4: while currentRow < desiredRow do
5: subsets← SubsetCombinations(currentStructure)
6: blockType← SelectBlockType(probabilityTable)
7: currentStructure← AddRow(blockType, subsets)
8: currentRow ← currentRow + 1
9: end while

10: PopulateStructure(currentStructure)
11: EvaluateStructure(currentStructure)

Fig. 3: The bottom row of this structure has three possible subset combina-
tions: each block is in a separate set (red), all blocks are in a single set (blue),
and the three left/right blocks are partitioned into two sets (green).

positioning of blocks used, allows our generator to create a
diverse range of complex structures. Algorithm 1 provides
an overview of the proposed generator, with a more detailed
explanation given below.

A. Structure Generation

First, a starting block type is selected at random from all
possible variants. This block type will become the peak(s) of
the structure, beneath which all other blocks will be placed.
For our implementation up to three blocks can be placed at
the top of the structure at varying distances apart, with the
number of peaks being chosen at random. Initially we are
only concerned about the local positions of blocks relative to
each other with the world positions being calculated after the
structure has been fully generated.

After the first row has been initialized we recursively add
more rows of blocks to the bottom of the currently generated
structure. The blocks at the base of the structure are split into
subsets based on the distances between them. All possible
subset combinations are then recorded, see Figure 3. A new
block type is then selected at random. For each possible subset
combination there are now three possible supporting block
placement options:

• Blocks are placed underneath the middle of each subset.
• Blocks are placed underneath the edges of each subset.
• Blocks are placed underneath both the middle and edges

of each subset.
All three of these possibilities are shown in Figure 4. Each

of these options is created for all subsets using the selected
block type, after which they are tested for validity. Any case
where blocks overlap each other is deemed invalid and is
removed as a possible option. In addition, each object in the
structure’s bottom row is tested for local support by the new

(a) (b) (c)
Fig. 4: The three possible supporting block placement options for a single
block subset: middle (a), edges (b), both middle and edges (c).

(a) (b)
Fig. 5: An example of a generated structure (a) and its corresponding directed
acyclic graph representation (b).

row. Each block in the bottom row of the current structure
must be supported from below, either at its middle position or
both of its edge positions. Any case that does not fulfil this
requirement is also deemed invalid. After validity checks have
been performed for all possible supporting block locations and
subset combinations, one of the valid options is selected at
random. If no valid options are available then a new block
type is selected and the process repeated. The selected option
is then used as the structure’s new bottom row. This process is
repeated until the desired number of rows is reached. Once the
structure is complete each block is assigned a random material.

Any structure generated using this method can be depicted
as one or more directed acyclic graphs, with each node
representing a specific block. Each block is a descendant of
the blocks that it supports (supportees) and subsequently an
ancestor of the blocks that support it (supporters), see Figure
5. This can be extremely useful for other stability analysis
techniques, such as identifying structural weak points [19].

B. Pig Placement

Once the structure has been fully created it is populated with
pigs. First, the space directly above the middle of each block
is analyzed to see if there is space for a pig to fit such that it
doesn’t overlap any other blocks. If this is not possible for a
particular block then the positions directly above the edges of
the block are checked as well. Any positions that are found to
be big enough to place a pig are recorded. Next, we test all
the possible ground positions that are within the structure (to
a set precision). Again we check for any overlap with nearby
blocks and valid positions are recorded. We then randomly
choose a position from all the valid possibilities and place a
pig at the given location. Any remaining pig locations that
would overlap the newly placed pig are removed and another
location is chosen at random. This continues until there are no
more valid locations or a desired number of pigs is reached.

Fig. 6: An example structure that has local stability but is globally unstable.

This process ensures that the structure will always contain at
least one pig, as a pig can always be placed on top of the
structure’s peak block(s).

C. Global Stability Analysis

Whilst our structure generation method ensures that each
block has local stability, the global stability of the structure
must be determined after its construction, see Figure 6. As
all the relevant physics parameters (mass, density, friction and
location) of blocks and pigs are known beforehand we can
calculate the global stability of our structure exactly [20]. It
is also possible to use qualitative stability analysis techniques
to estimate the stability of the structure more quickly, whilst
sacrificing some accuracy [21] [22]. Unfortunately, the Unity
Engine upon which the Angry Birds clone is based suffers
from simulation inaccuracies. These minor discrepancies cause
structures which are theoretically stable to collapse within the
simulation if given enough time. Currently, the only way to be
certain that the structure will not collapse in this environment
is to place the structure within a level and record if any blocks
move a significant distance from their origin point [15]. If the
structure is deemed unstable using the chosen approach then
it is abandoned and a new structure is generated.

D. Structure Placement

Once the structure has been fully generated it can be placed
within the Angry Birds level. For the clone implementation,
levels are specified as xml files with the block and pig
locations given as coordinates in world space. First, we take
the bottom row of our structure and place it on top of the
level’s ground (the location of the ground is fixed within the
level). We then continue adding additional rows on top of the
structure’s base until all rows have been placed. Pig locations
are then converted to their corresponding world coordinates
and placed within the level as well. It is also possible to place
multiple structures within the same level at different locations.

IV. FITNESS FUNCTION

In order to evaluate individual structures against each other
we define a fitness function to measure certain desirable
properties. This fitness function calculates a fitness value for
a given structure, with a lower fitness value indicating a more
desirable structure. A fitness function has been proposed in
previous Angry Birds papers [15], [16] for a similar reason
but we believe it has several limitations in its current form.
The original fitness function takes into account the structure’s

simulated velocity over time (used to measure the stability of
the structure) as well as the number of blocks and pigs used.
Our method analyzes stability outside of the fitness function,
automatically rejecting a structure if it is deemed unstable.
This provides the user with more freedom over which approach
to use and will allow any new stability estimation techniques
to integrate seamlessly with our algorithm. Our fitness function
also improves upon the previous implementation by updating
the analysis of certain parameters, as well as proposing some
new ones of our own. These can be separated into four distinct
factors, number of pigs, number of blocks, structure aspect
ratio and pig dispersion; each of which can affect the fitness
value of a structure. We believe that this new function provides
a broader and more sophisticated analysis of the structures
generated by our algorithm.

A. Number of Pigs

This is the only component of the original fitness function
that has not been altered. Simply put, the more pigs that are
present within a structure the more desirable the structure. |p|
is defined as the total number of pigs in the structure. This
section of the fitness function is described by equation (1):

1

1 + |p| (1)

B. Number of Blocks

The original fitness function defined this component as the
difference between the desired and actual number of blocks,
divided by the difference between the maximum and actual
number of blocks. While this was appropriate for simple
columns of blocks it becomes very impractical when used
for more complex structures. This is because the maximum
number of blocks that a structure could theoretically contain
grows exponentially as the number of rows increases. For
example, a ten row structure generated using our method
typically contains between twenty and sixty blocks, but the
maximum number it could theoretically contain is 88,572
(structure with three peak blocks and each block having
three supporting blocks). This means that the value for this
component of the fitness function will become insignificant for
any structures with a medium to high number of rows. Instead,
we suggest a more suitable calculation, where the difference
between the desired number of blocks B and the actual number
of blocks |b| is multiplied by a set factor X . This factor is used
to adjust how much of an impact the difference between the
desired and actual number of blocks has on the structure’s
overall fitness value. This section of the fitness function is
described by equation (2):

X(
√

(B − |b|)2) (2)

C. Structure Aspect Ratio

One of the new components that we have added to our
fitness function is the structure’s width to height ratio (aspect
ratio). Similar to the previous component, the maximum aspect
ratio for any structure can be extremely large depending on the
number of rows. This means that any attempt to normalize the

ratio by dividing by the maximum would severely reduce the
effectiveness of this component. Instead, we simply multiply
the difference between the desired ratio R and the actual ratio
|r| by a set factor Y . This factor is used to adjust how much
of an impact the difference between the desired and actual
structure aspect ratio has on the structure’s overall fitness
value. This section of the fitness function is described by
equation (3):

Y (
√

(R− |r|)2) (3)

D. Pig Dispersion
The other component that we have added to our fitness

function is the dispersion, or spread, of pigs throughout the
structure. The theory here is that structures with pigs located
throughout them will be more desirable than structures with
the pigs all grouped together. There are several methods that
are currently available for measuring the spread of points (or
in ours case pigs) throughout a 2D space.

1) Variance from center point: This method estimates the
dispersion of pigs by calculating the variance for the Euclidean
distance between each pig’s position and the mean position of
all pigs. This value is then normalized by dividing it by the
length of the diagonal of the structure’s bounding box.

2) Mean nearest neighbor distance: This method estimates
the dispersion of pigs by calculating the mean of the nearest
neighbor distances for each pig [23]. This value is then
normalized by dividing it by the length of the diagonal of
the structure’s bounding box.

3) Morisita’s index of dispersion: This method first divides
the structure’s bounding box into a set number Q of equally
sized quadrats. The number of pigs in each quadrat ni is then
counted and used together with the total number of pigs N
to calculate Morisita’s index of dispersion [24], described by
equation (4):

MI = Q(

∑Q

i=1
ni(ni − 1)

N(N − 1)
) (4)

4) Pig surrounding area overlap: This method was created
specifically to address limitations which were identified in the
previous methods and so provides a robust estimation of pig
dispersion. First, the total width and height of the structure is
divided by the square root of the number of pigs. A rectangle
with this new width and height is then placed at the location
of each pig within the structure. If none of these rectangles
overlap then their total area would equal the area of the
structure’s bounding box. However, it is likely that some of
these rectangles will overlap those that are nearby, resulting
in a lesser value. The total area that all the rectangles cover is
then calculated and normalized by dividing it by the area of
the structure’s bounding box (maximum possible area).

5) Comparison of methods: Whilst all the methods de-
scribed above give suitable estimations of pig dispersion for
the majority of generated structures, there are several cases
where they can give unreliable results. To compare all the
methods, each was tested on four different structures, see
Figure 7, and the results are given in Table I.

TABLE I
COMPARISON OF PIG DISPERSION ESTIMATION METHODS

Mean
Variance

Mean
Nearest
Neighbor

Morisita’s
Index of
Dispersion

Surrounding
Area
Overlap

Structure a 0.7314 0.0763 0.3333 0.5782
Structure b 0.3613 0.2568 0.6667 0.8908
Structure c 0.1592 0.0763 0.2778 0.3263
Structure d 0.5092 0.0763 0.5556 0.5958

In Figure 7, we can see that although the pigs are more
dispersed in (b) than in (a) the mean variance from center
point was higher for (a) than (b). This is because this method
essentially rewards structures with pigs placed away from
the center point, rather than structures with pigs dispersed
throughout. A single grouping (c) would correctly give a very
low dispersion value but two separate groupings results in an
incorrect estimation.

In Figure 7, we can also see that although the pigs are
more dispersed in (d) than in (c) the mean nearest neighbor
distance is the same for both. This is because this method only
uses the distance between each pig and its nearest neighbor
to estimate pig dispersion. Having groupings of two pigs at
multiple locations gives the same value as having all pigs at
one location.

The problem with Morisita’s index of dispersion is that
although it gave good estimations for the structures tested, it
relies on the number of quadrats to be chosen effectively. For
this comparison, we created nine quadrats (3x3) but a different
number of quadrats would have yielded quite a different result.
This means that this method is only accurate when there are a
large number of pigs available, so that each quadrat contains
a sufficient number of pigs to be representationally accurate.

Our own method for estimating pig dispersion, based on
measuring the overlap of each pig’s surrounding area, per-
formed well in all cases and can be normalized effectively.
This method was therefore chosen to be used in our fitness
function, where d defines the dispersion value. The set factor
Z is used to adjust how much of an impact the dispersion of
pigs has on the structure’s overall fitness value. This section
of the fitness function is described by equation (5).

Z(1− d) (5)

E. Complete Fitness Function

The sum of all these separate components for number
of pigs, number of blocks, structure aspect ratio and pig
dispersion makes up the complete fitness function, described
by equation (6):

F = 1
1+|p| +X(

√
(B − |b|)2) + Y (

√
(R− |r|)2) + Z(1− d) (6)

V. PROBABILITY TABLE

Instead of randomly selecting a block type during structure
generation in an unbiased manner, a probability table can
be used to alter the chance of a particular block type being
selected. Each of the block types available is allocated a
probability of being selected, with all probabilities summing

to one. Whilst this probability table allows for more designer
control, it can also be optimized automatically using a training
algorithm and our fitness function. The training algorithm
attempts to find structures which minimise the fitness function
for the given parameters. Each training algorithm iteration
creates nine different structures (a single generation) and uses
the fitness function to rank them from most desirable (R = 9)
to least desirable (R = 1). The frequency of block types
in each structure is then used to update the corresponding
sections of the probability table using equation (7):

Pi = Pi +

∑9

R=1
(SRi)(R− 5)

n
∑9

R=1
(SR)

(7)

Pi represents the probability table value for block i, SRi

represents the number of i blocks that the structure with
rank R contains, SR represents the total number of blocks
that the structure with rank R contains, and n is an update
factor which influences the speed at which the probability table
values converge. If the probability table value for any block
type is more than one then it is reduced to one. Likewise,
any probability table value less than zero is increased to zero.
After the probability table has been fully updated the values
are renormalized so that they again sum to one. The probability
table can be updated recursively over many generations using
this technique.

The ability to update the probability table with the fitness
function can be used to provide greater direction over what
types of structures are created. Each component of the fitness
function can be weighted to indicate how much emphasis
should be placed on each factor. This allows the user to alter
the parameters of the fitness function and hence tailor the out-
put of the structure generator to suit their needs. For example,
if the user prefers structures that are tall and thin, rather than
wide and short, then the desired structure aspect ratio is set
very low and the corresponding section of the fitness function
weighted to give more of an impact on the structure’s overall
fitness value. The probability table is then repeatedly updated
using this fitness function, after which the mean aspect ratio
of structures generated using this new probability table will be
less than before. Whilst this method does not guarantee that
certain requirements will be met (e.g. the structure’s height
must be greater than its width) it can be used to improve the
probability of such a structure being created without severely
restricting the generator’s expressivity.

VI. EXPERIMENTS AND RESULTS

Several experiments were carried out to test different com-
ponents of the structure generator and fitness function.

A. Probability Table Optimisation

As previously discussed, a probability table for block type
selection can be optimized over many generations using our
specified fitness function. We therefore updated our probability
table over 200 separate generations, with nine structures in
each generation, for a total of 1800 structures. Each structure
had ten rows and for our fitness function we defined: B = 40,

(a) (b)

(c) (d)
Fig. 7: Four structures with the same block placement but with different pig dispersions.

Fig. 8: Probability table values for each block type after 200 generations.

R = 2.0, X = 0.01, Y = 0.2 and Z = 1.0. We then compared
three different update factors of n = 10, n = 100 and n =
1000, with the probability for each block type initially set to
1/13. The result of this experiment is illustrated in Figure 8.

For n = 10, only five block types had a probability greater
than zero. These were block types 1, 2, 8, 10 and 12, with
block types 1 and 10 taking almost 70% of the probability
between them. This is a clear indication that the update factor
is set too low, as once the probability for a block type is near
zero it is very difficult for it to increase again. This places an
overemphasis on the fitness function, increasing the likelihood
of creating a desirable structure, but greatly reducing the range
of structures that can be generated.

For n = 1000, the probability values changed very little
even after 200 generations. This suggests that the update factor
is set too high and that the probability table values are not
being updated by a significant amount for each generation.

For n = 100, the probability values have been updated
a reasonable amount but the change is not so large as to
significantly reduce the structure generator’s expressivity. The
probability values for block types 1, 2, 6, 8, 10 and 12
increased, whilst the values for block types 3, 4, 5, 7, 9, 11
and 13 decreased.

As a result of this experiment, an optimized probability
table was created using 200 generations and n = 100 for

each of three different row values, five, ten and fifteen.
These probability tables were then used when analyzing the
generator’s expressivity.

B. Expressivity analysis

Expressivity analysis has been described and implemented
in many previous content generation papers as a means of
comparing and contrasting different techniques. This is typ-
ically expressed as a metric which indicates the generator’s
strengths and weaknesses in various capacities. In this paper
we define four measures based on metrics used in previous
research [14], [15], [25]: frequency, linearity, density and
leniency. Frequency evaluates the number of times that a block
occurs within a structure. Linearity measures the width and
height of each structure. Density provides a measure for the
amount of ’free space’ within a structure. Leniency estimates
the difficulty of a structure, taking into account pig and block
numbers. These metrics will allow our structure generator to
be compared against any future methods. Presently however,
there are no suitable prior algorithms with which to compare
ours against.

For our experiments we generated 200 stable structures for
each of three different row values, five, ten and fifteen. Each
of these 200 structure groups was then sampled to find the
average and standard deviation for the frequency, linearity,
density and leniency. Example structures created using our
generation algorithm are displayed in Figure 9.

Figure 10 shows the results of frequency sampling for
structures with five rows. The average number of blocks is
12.72 with a standard deviation of 7.08. The average number
of pigs is 3.07 with a standard deviation of 1.92. Figure 11
shows the frequency results for structures with ten rows. The
average number of blocks is 27.39 with a standard deviation
of 14.07. The average number of pigs is 4.93 with a standard
deviation of 3.28. Figure 12 shows the frequency results for
structures with fifteen rows. The average number of blocks is
47.07 with a standard deviation of 24.59. The average number
of pigs is 7.54 with a standard deviation of 5.44.

The increase in pig numbers for structures with more rows
is likely due to the increased number of blocks and hence the
increased availability of viable pig locations. However, the pig

(a) (b) (c)
Fig. 9: Three example generated structures with five rows (a), ten rows (b) and fifteen rows (c).

Fig. 10: Average and 95% confidence interval for block type frequency in
structures with five rows.

Fig. 11: Average and 95% confidence interval for block type frequency in
structures with ten rows.

Fig. 12: Average and 95% confidence interval for block type frequency in
structures with fifteen rows.

frequency relative to the block frequency was much greater for
smaller structures than the larger ones. This is probably caused
by the fact that the total number of pigs within a structure has
a much greater impact on the fitness function for structures
with a low number of blocks.

The relative frequencies of each block type also varied for
structures of different sizes. Structures with fewer rows tended
to favour smaller block types such as 5 and 7. This was likely
due to the fact that their small width allowed more of them
to fit within each row, which increased the total block count,
and their small height meant that they did not decrease the
structure’s aspect ratio as much as taller blocks. Structures
with more rows tended to favour the wider block types, as
these both decreased the total block count and increased the
structure’s aspect ratio.

Linearity was measured using both the average width (µW)
and height (µH) of all generated structures for each row
amount, see Table II. The large standard deviation (σ) shows
that the structures created can differ greatly in terms of their
width and height, indicating a large variation in the block
arrangement of the generated structures.

The density of a structure was measured by summing the
areas of all blocks within the structure and dividing this by the
total area of the structure itself, including all sections of empty
space that it contains. The average density (µD) for each row
amount, as well as the standard deviation (σ), is provided in
Table II. The density of a structure appears to decrease as the
number of rows increases, meaning that larger structures are
likely to have more empty space within them and are therefore
less robust than their smaller counterparts.

For many prior and current content generation methods,
leniency is measured by analyzing the presence of certain
objects within the subject [25], [26]. For this experiment we
defined leniency using the number of pigs |p| and blocks |b|
that are present within the structure, described by equation (8):

Leniency = −2|p| − |b| (8)

Although primitive, this formula gives a rough estimate of
how difficult it will be to kill all the pigs located within
the given structure. The average leniency (µL) for each row
amount, as well as the standard deviation (σ), is provided in
Table II. The leniency of a structure can be seen to increase
with the number of rows, due to the expanded number of
blocks and pigs that are present within the structure. This

TABLE II
LINEARITY, DENSITY AND LENIENCY FOR STRUCTURES WITH 5, 10 AND

15 ROWS

Rows Width
(µW |σ)

Height
(µH |σ)

Density
(µD|σ)

Leniency
(µL|σ)

5 2.651|1.727 2.841|0.995 0.701|0.186 −18.86|10.22
10 3.631|1.765 5.749|1.563 0.653|0.169 −37.25|17.14
15 6.349|2.450 6.353|1.274 0.612|0.126 −62.15|25.92

information can be used to influence other important aspects
within the Angry Birds game, such as the number of birds
provided or the ordering of certain levels.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a search-based procedural content
generation algorithm for creating complex stable structures
within the video game Angry Birds. The algorithm builds
structures using a top-down approach, with block types se-
lected using a specified probability table. Each generated
structure is symmetrical and can be represented as a directed
acyclic graph. The structures created are populated with pig
targets and analyzed for global stability. Other factors such
as a varying number of peaks, multiple locations for support
block placement and several possible materials, ensure that the
range of possible structures is extensive and diverse.

Each generated structure is evaluated using a fitness function
which considers the pig number, block number, aspect ratio
and pig dispersion. This function can also be used to evolve the
probability table by updating each block’s chance of selection
over many different generations. Each section of the fitness
function can also be given a different weighting, allowing
the user to define which aspects of the structure are most
important.

Our structure generator was evaluated in terms of its expres-
sivity and optimization potential. Four metrics were defined
to investigate important aspects of the generated structures:
frequency, linearity, density and leniency. The results of this
analysis demonstrated that our structure generator can create
a wide range of structures with many different attributes.

Future work could be to develop algorithms which create
structures that can contain multiple block types and angles
within each row. Additional research could also be conducted
into estimating the number of birds required to kill all pigs
within a given structure. This information could then be
combined with our structure generation algorithm to create
a full procedural level generator for Angry Birds.

REFERENCES

[1] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, pp. 1–22, 2013.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[3] S. Dahlskog and J. Togelius, “Patterns and procedural content genera-
tion: Revisiting mario in world 1 level 1,” in Proceedings of the First
Workshop on Design Patterns in Games. ACM, 2012, pp. 1:1–1:8.

[4] G. N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3,
pp. 147–161, 2011.

[5] A. Liapis, G. N. Yannakakis, and J. Togelius, “Optimizing visual prop-
erties of game content through neuroevolution,” in Artificial Intelligence
for Interactive Digital Entertainment Conference, 2011.

[6] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Evolving content in
the galactic arms race video game,” in Computational Intelligence and
Games, 2009. CIG 2009. IEEE Symposium on, 2009, pp. 241–248.

[7] C. Browne, “Automatic generation and evaluation of recombination
games,” Thesis, Queensland University of Technology, 2008.

[8] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelback, G. N.
Yannakakis, and C. Grappiolo, “Controllable procedural map generation
via multiobjective evolution,” Genetic Programming and Evolvable
Machines, vol. 14, no. 2, pp. 245–277, 2013.

[9] V. Valtchanov and J. A. Brown, “Evolving dungeon crawler levels
with relative placement,” in Proceedings of the Fifth International C*
Conference on Computer Science and Software Engineering. ACM,
2012, pp. 27–35.

[10] L. Ferreira, L. Pereira, and C. Toledo, “A multi-population genetic
algorithm for procedural generation of levels for platform games,”
in Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation. ACM, 2014,
pp. 45–46.

[11] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing game,” in
Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation. ACM, 2011, pp. 395–402.

[12] M. Cook and S. Colton, “Multi-faceted evolution of simple arcade
games,” in Computational Intelligence and Games (CIG), 2011 IEEE
Conference on, 2011, Conference Proceedings, pp. 289–296.

[13] N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for
cut the rope through a simulation-based approach,” in Proceedings of the
Ninth AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2013.

[14] M. Shaker, M. H. Sarhan, O. A. Naameh, N. Shaker, and J. Togelius,
“Automatic generation and analysis of physics-based puzzle games,” in
Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
2013, pp. 1–8.

[15] L. Ferreira and C. Toledo, “A search-based approach for generating
angry birds levels,” in Computational Intelligence and Games (CIG),
2014 IEEE Conference on, 2014, pp. 1–8.

[16] ——, “Generating levels for physics-based puzzle games with estimation
of distribution algorithms,” in Proceedings of the 11th Conference on
Advances in Computer Entertainment Technology. ACM, 2014, pp.
25:1–25:6.

[17] M. Kaidan, C. Y. Chu, T. Harada, and R. Thawonmas, “Procedural
generation of angry birds levels that adapt to the player’s skills using
genetic algorithm,” in 2015 IEEE 4th Global Conference on Consumer
Electronics (GCCE), 2015, pp. 535–536.

[18] A. Kolmogorov, “Three approaches to the quantitative definition of
information,” Problems Inform. Transmission, vol. 1, no. 1, pp. 1–7,
1965.

[19] P. Zhang and J. Renz, “Qualitative spatial representation and reasoning
in angry birds: The extended rectangle algebra,” Fourteenth Interna-
tional Conference on the Principles of Knowledge Representation and
Reasoning, 2014.

[20] A. G. M. Blum and B. Neumann, “A stability test for configurations of
blocks,” Massachusetts Institute of Technology, Tech. Rep., 1970.

[21] Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3d-based reasoning
with blocks, support, and stability,” in Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on, 2013, pp. 1–8.

[22] X. Ge, J. Renz, and P. Zhang, “Visual detection of unknown objects in
video games using qualitative stability analysis,” IEEE Transactions on
Computational Intelligence and AI in Games, 2015.

[23] M. Dry, K. Preiss, and J. Wagemans, “Clustering, randomness, and
regularity: Spatial distributions and human performance on the traveling
salesperson problem and minimum spanning tree problem,” The Journal
of Problem Solving, vol. 4, no. 1, 2012.

[24] M. Morisita, “Measuring the dispersion of individuals and analysis of
the distribution pattern,” Thesis, Kyushu University, 1959.

[25] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. ACM, 2010, pp. 4:1–4:7.

[26] D. Wheat, M. Masek, C. P. Lam, and P. Hingston, “Modeling perceived
difficulty in game levels,” in Proceedings of the Australasian Computer
Science Week Multiconference. ACM, 2016, pp. 74:1–74:8.

