2017 AIBIRDS LEVEL GENERATION COMPETITION

The 2017 AIBIRDS Level Generation Competition

Matthew Stephenson, Jochen Renz, Xiaoyu Ge, Lucas Ferreira, Julian Togelius, and Peng Zhang

Abstract—This paper presents an overview of the second
AIBIRDS level generation competition, held jointly at the 2017
IEEE Conference on Computational Intelligence and Games,
and the 26th International Joint Conference on Artificial In-
telligence. This competition tasked entrants with developing a
level generator for the physics-based puzzle game Angry Birds.
Submitted generators were required to deal with many physical
reasoning constraints caused by the realistic nature of the game’s
environment, in addition to ensuring that the created levels
were fun, challenging and solvable. This year’s competition
was a significant improvement over the previous year, with a
greater number of participants and more advanced generators.
Within this paper we describe the framework, rules, submitted
generators and results for this competition. We also provide some
background information on related research and other video
game Al competitions, as well as discussing what can be learned
from this year’s competition. There are several game and real-
world applications for this type of research, and we provide some
examples of the types of levels we would like future competition
entries to generate.

Index Terms—Angry Birds, procedural content generation,
level generation, physics-based games, AI competitions

I. INTRODUCTION

Over the past several years, many different Al competitions
focused around video games have become extremely popular.
Many of these competitions have yielded promising results and
improvements for the wider AI community, and have been
hosted at several major international conferences including
CIG, AIIDE, IJCAI, ECAI, GECCO and FDG to name just
a few. Whilst competitions and challenges centred around Al
playing classic board games, such as chess with Deep Blue
and more recently Go with DeepMind’s AlphaGo [1], have
been incredibly popular and successful, video games typically
provide a much more complex and challenging domain in
which to interact. Past video game AI competitions have
mostly focused on developing intelligent agents that can play
the game(s) successfully, but other competition objectives are
possible. One of the most popular focuses for video game Al
competitions apart from agents, is that of procedural content
generation (PCG).

PCG is the automatic creation of game content without
manual interaction by a human designer [2] and is a major
area of investigation within the video game industry from both
a research and business perspective [3]. The most common
reason for utilising PCG is that it can dramatically increase
the range of available content within a game whilst still being

M. Stephenson, J. Renz, X. Ge and P. Zhang are with the Research School
of Computer Science, Australian National University, Canberra, A.C.T. 0200,
Australia, e-mail: (matthew.stephenson@anu.edu.au).

L. Ferreira is with the Department of Computational Media, University of
California in Santa Cruz.

J. Togelius is with the NYU Game Innovation Lab, Tandon School of
Engineering, New York University.

cheap and effective. Creating a large amount of high quality
content is extremely time consuming if performed manually by
a designer. PCG can be a good solution for many large or low-
budget games by dramatically reducing a game’s development
time, as well as expanding the available content and lowering
memory consumption [4]. PCG can also be used to create
an almost endless amount of content, and helps ensure that
no two experiences are likely to be the same. In particular,
the ability to automatically generate a huge range of varied
and complete levels allows the player to keep playing nearly
indefinitely, without the game becoming too repetitive.

The most common types of “game content” that are gener-
ated are usually levels or sub-sections of levels, referred to as
procedural level generation (PLG). PLG has been previously
implemented in many different game types, including real-time
strategy [5], [6], platform [7], racing [8], arcade [9], role-
playing [10], stealth [11] and rogue-like [12]. The General
Video Game AI Competition has also worked on attempting
to procedurally generate levels for multiple general games
[13], [14], although the results so far are somewhat mixed.
Several papers have also explored the use of PLG for physics-
based puzzle games such as Cut the Rope [15], [16] and, more
notably for this paper, Angry Birds [17], [18], [19], [20], [21],
[22], [23]. The physics constraints employed in these types
of games, along with the exceptionally large state and action
spaces, create many problems for PLG [24].

PLG is particularly difficult for physics-based puzzle games,
as the generator must not only deal with the physical con-
straints of the environment, but also still ensure that levels are
fun, solvable and challenging for the player. One such popular
game whose levels fit into this category is Angry Birds. This
game has been of interest to the wider Al game research
community for many years, with the annual competition
focused around developing agents to play it (AIBIRDS agent
competition) drawing dozens of participating teams [25]. The
type of physical reasoning required to solve levels from this
game is very similar to that needed for an agent to operate
successfully in the real-world [26]. Physics-based games such
as Angry Birds provide an effective and realistic simulation
of the real-world for Al systems to try out their algorithms.
Generators attempting to create levels for this game must
be acutely aware of the game’s physics and know how to
create content that is viable within it. Angry Birds levels
typically contain multiple blocks and other objects that are
stacked or arranged together to create structures. Generating
and positioning these structures such that they are not only
stable but present an interesting and solvable puzzle for the
user is by no means an easy task. For these reasons, we believe
that the challenge of creating physically stable, enjoyable and
feasible levels for a game such as Angry Birds is well worth
exploring and researching.

2017 AIBIRDS LEVEL GENERATION COMPETITION

In this paper we present the description, entrants, results
and conclusions for the second AIBIRDS level generation
competition. Participating competitors developed PLG algo-
rithms for automatically creating Angry Birds levels. This
year’s competition added in many new game elements and
compatibility features which allowed generators to create far
more sophisticated and complex levels than had previously
been possible. This included the addition of multiple bird and
pig types, the ability to set the size of the level, and the
inclusion of several new game objects such as TNT boxes.
Generated levels must also satisfy certain user-defined criteria,
the specifics of which are discussed later. Participants were
also able to combine their level generator with the Al agents
from previous AIBIRDS agent competitions, providing them
with a way to analyse the difficulty and feasibility of their
generated levels. The submitted generators were evaluated by
several judging panels. These panels gave each generator a
rating based on the enjoyment, creativity and difficulty of the
levels it created.

The remainder of this paper is organized as follows: Section
Il provides the background to this competition, including
past Al and PCG video game competitions, a description of
the Angry Birds game, and details on the related AIBIRDS
agent competition; Section III describes the competition itself,
providing details on the clone that is used instead of the actual
Angry Birds game, as well as the rules and judging procedure;
Section IV contains descriptions of the five generators submit-
ted to this year’s competition; Section V provides the results of
the competition. Section VI discusses the results of the com-
petition, providing some possible uses and improvements for
the generators as well as desired goals for future competitions;
Section VII presents our final conclusions.

II. BACKGROUND
A. Previous Al and PCG video game competitions

Examples of popular AI competitions (both past and
present) include the Mario AI Championship, which originally
revolved around developing agents for solving Super Mario
Bros levels [27], [28] but also had a secondary track focussing
on level generation [29], the StarCraft Al Competition [30], the
Visual Doom AI Competition (ViZDoom) [31], the Geometry
Friends Game Al Competition [32], the Fighting Game Al
Competition [33], as well as the aforementioned AIBIRDS
agent competition [26], [34]. The General Video Game Al
(GVGAI) Competition has also run several tracks around
developing agents for playing general video games. These
include the single-player planning track [35], the two-player
planning track [36], [37] and the learning track [38]. There
have also been several additional GVGAI competition tracks
focusing on general content generation, including the level
generation track [13], [14], [38] and the rule generation track
[39]. Physics-based games have also been recently added
to the GVGAI game collection [40], although the physics
system used is significantly limited in its current capabilities.
Compared to other games from previous competitions, Angry
Birds presents a complex physics-engine that level generators
must effectively reason about in order to be successful.

Fig. 1: Screenshot of a level from the Angry Birds game.

B. Angry Birds game

Angry Birds is a popular physics-based puzzle game where
in each level the player uses a slingshot to shoot birds
at structures composed of blocks, with pigs placed within
or around them [41]. The player’s objective is to kill all
the pigs within a level using the birds provided. A typical
Angry Birds level, as shown in Figure 1, contains a slingshot,
birds, pigs and a collection of blocks arranged in one or
more structures. All objects within the level have properties
such as location, size, mass, friction, density, etc., and obey
simplified Newtonian physics principles defined within the
game’s engine. Each block in the game can have multiple
different shapes as well as being made of one of three materials
(wood, ice or stone). Each bird is assigned one of five different
types (red, blue, yellow, black or white). Each of these bird
types are strong/weak against certain block materials, as well
some types possessing secondary abilities which the player
can activate during the bird’s flight. The player can choose the
angle and speed with which to fire a bird from the slingshot,
as well as a tap time for when to activate the bird’s special
ability if it has one, but cannot alter the ordering of the birds
or affect the level in any other way. Pigs are killed once they
take enough damage from either the birds directly or by being
hit with another object. The ground is flat but additional terrain
squares, which are impenetrable and unaffected by gravity, can
be added anywhere. TNT can also be placed within a level
and will explode when hit by another object. The difficulty of
this game comes from predicting the physical consequences
of actions taken, and accurately planning a sequence of shots
that results in success. Points are awarded to the player once
the level is solved based on the number of birds remaining
and the total amount of damage caused.

C. AIBIRDS agent competition

Although the AIBIRDS level generation competition is only
in its second year, the AIBIRDS agent competition has been
running annually since 2012. Entrants in this competition
are tasked with developing an agent that can play and solve
unknown Angry Birds levels. This competition was created as
a means to promote the research and creation of intelligent
agents that can reason and predict the outcome of actions in
a physical simulation environment [34]. This type of physical
reasoning problem is very different to traditional games as
the attributes and parameters of various objects are often

2017 AIBIRDS LEVEL GENERATION COMPETITION

. 6
=]

—

:

L

= =

Fig. 2: The twelve different block shapes available.

K
; @1211

8

imprecise or unknown, meaning that it is very difficult to
accurately predict the outcome of any action taken [42].
Whilst not directly related to the AIBIRDS level generation
competition, it is possible to use these agents to aid with
evaluating the generated levels. We also discuss later some
ways in which both these competitions could be combined to
help create better levels, as well as increasing the abilities and
performance of the agents.

III. AIBIRDS LEVEL GENERATION COMPETITION
A. Science Birds

Angry Birds is a commercial game developed by Rovio
Entertainment who do not provide an open-source version
of their code. Instead we use a Unity-based clone of the
Angry Birds game developed by Lucas Ferreira called Science
Birds [23], which is open-source and available to download
from GitHub [43]. This clone provides many of the necessary
elements to generate levels very similar to those of Angry
Birds in a realistic physics environment. There are currently
twelve different block shapes available, see Figure 2. Each
block is assigned one of three materials (wood, ice or stone)
and can also be rotated to any arbitrary angle. There are five
different bird types (red, blue, yellow, black and white) as
well as three different sizes of pig (small, medium and large).
There are also TNT boxes that explode when hit, and terrain
squares than can be used to make floating platforms or other
static areas of the level.

The size and material of blocks impacts their physical
properties and how much damage they can withstand before
they are destroyed. The size of a pig also determines the
amount of damage needed to kill it. The special abilities of
each of bird type are described below, along with the materials
that they are strongest/weakest against:

o Red bird: No special ability, neither strong nor weak

against any specific material.

o Blue bird: Splits into three birds when tapped, strong
against ice blocks, weak against stone blocks.

o Yellow bird: Shoots forward in a straight line with
increased speed when tapped, strong against wood blocks,
weak against ice blocks.

« Black bird: Explodes either when tapped or after hitting
an object, strong against stone blocks.

e White bird: Drops an egg directly downwards when
tapped, this egg explodes after hitting another object.

All of these described object types can be seen in the
example Science Birds level shown in Figure 3. It has three

Fig. 3: An example level of the Science Birds game.

<?xml version="1.8" encoding="utf-16"?>
<Level width="2">
<Camera x="8" y="8" minWidth="28" maxWidth="26">
<Birds>

<Bird type="BirdRed"/>
<Bird type="BirdBlue"/>
<Bird type="Bird¥ellow"/>
<Bird type="BirdBlack"/>
<Bird type="BirdWwhite"/>

</Birds>
<5lingshot x="-9" y="-2.5">
<GameObjects>

<Block type="RectTiny" material="wood"” x="2.54" y="-3.23" /»

<Block type="RectTiny" material="wood" x="1.78" y="-3.23" />

<Block type="5SquareHole” material="wood" x="2.15" y="-2.68" />

<Block type="5quareHole” material="stone" x="2.2" y="B.72" />
<Block type="RectTiny" material="stone” x="1.76" y="8.17" />
<Block type="RectTiny" material="stone" x="2.6" y="B.17" />
<Block type="RectTiny" material="ice" x="2.6" y="2.91" />
<Block type="RectTiny" material="ice” x="1.76" y="2.91" />
<Block type="5quareHole” material="ice” x="2.2" y="3.46" />
<Pig type="BasicSmall" material="" w="2.15" y="-2.12" /»
<Pig type="BasicSmall" material="" ®="2.2" y="1.38" />
<Pig type="BasicSmall" material="" w="2.2" y="a4.12" [>
<Platform type="Platform” material="" x="1.04" y="-8.31" />
<Platform type="Platform™ material="" x="1.64" y="-8.31" />
<Platform type="Platform” material="" w="2.27" y="-8.31" />
<Platform type="Platform" material="" w="3.47" y="-8.31" />
<Platform type="Platform” material="" x="2.86" y="-8.31" />
<Platform type="Platform™ material="" ®="2.79" y="2.4" />
<Platform type="Platform" material="" w="3.4" y="2.4" /=
<Platform type="Platform” material= x="2.2" y="2.4" />
<Platform type="Platform" material= ="1.58" y="2.4" />
<Platform type="Platform” material= ®="0.97" y="2.4 />

<TNT type="" x="1.11" y="-4"
</GameObjects>
</Levely

rotation="8" />

Fig. 4: XML representation of the example Science Birds level
from Figure 3.

blocks of each material, three pigs, a TNT box and five birds
(one of each type). Moreover, it has two rows of static square
platforms floating in the air.

Levels are represented internally using a XML format. This
format is composed of the size of the level, the number, type
and order of birds, the position of the slingshot, and a list of
game objects, as shown in Figure 4. Each game object has
four attributes:

o Type: String representing the type of the object.

o Material: String defining the material of a block. Valid
values are only “wood”, “stone” and “ice”. Certain ob-
jects such as pigs, platforms and TNT do not need a
material.

« X, Y: Float numbers representing the position of the game
object. The origin (0,0) of the coordinates system is the
centre of the level.

« Rotation: Float number that defines the rotation of the

game object (optional).

2017 AIBIRDS LEVEL GENERATION COMPETITION

B. Rules

To ensure that generators entered into the competition do
not simply produce hand-designed levels, submitted generators
must create levels in accordance with an input data file. This
file contains the necessary requirements about the levels that
will be generated. This is provided as four separate lines
containing the following information in the given order:

« Number of levels to generate (positive integer)

« Forbidden block and material combinations (list of invalid
materials/block shapes, e.g. “Stone Triangle”)

« Range for number of pigs (two positive integers, mini-
mum and maximum)

« Time limit to generate levels in minutes (positive integer)

During the competition, information about what levels to
create is passed to each generator using this input file. These
restrictions were not too severe, as the goal is not to generate
levels for specific structure requirements, but to simply ensure
that all levels are created autonomously without too much
designer influence. The time limit value was always set to
one hour for every ten levels, which based on past competition
experience should not be an issue for most generators.

C. Baseline generator

All competition entrants were provided with a baseline
level generator written in python, which provides a simple
and effective method for generating levels within Science
Birds. Participants were able to improve and enhance the
baseline algorithm to create more advanced level generator
software. It was also possible for participants to create their
own level generators from scratch using any programming
language, providing fresh ideas and insight into generating
fun and exciting levels. For a more in-depth explanation of
the baseline structure and level generation processes, as well
as examples of its generated levels, please refer to the detailed
competition instructions available from the AIBIRDS website
[44]. Software for allowing Angry Birds agents developed for
the AIBIRDS agent competition to play generated levels was
also provided, along with a simple naive agent for solving
levels. This naive agent always targets a randomly selected pig,
but more sophisticated open-source agents are available from
the AIBIRDS forum and can be integrated with the Science
Birds program very easily.

D. Judging and scoring

During the competition, each generator created 10 levels
from each of 10 different input files, giving 10 groups of 10
levels. A single level from each of these groups was then
selected at random. The selected levels from each generator
were then combined to form one single group, giving 10 levels
for each generator, with the ordering of levels in each group
randomised. This was done to ensure that no generator is
unfairly punished by a particular input file. Generated levels
were evaluated based on three different criteria. The first is
how fun and enjoyable the level is to play and determines the
overall competition ranking (main prize). The concept of “fun”
was left deliberately vague to prevent biasing judges as much

as possible. The second criterion is how creative the level
design is (secondary prize). The third is how well balanced
the difficulty of the level is (secondary prize). Several panels
of judges evaluated each generator based on its levels, giving
it a rating between zero (total failure, levels not generated or
restrictions violated) and ten (perfectly designed levels) for
each of the three level evaluation criterion. The judges also
penalised any level generator that generated levels which were
deemed too similar to each other (i.e. little variation between
the levels generated). The final score for each level generator
is the total rating across all judging panels.

IV. COMPETITION GENERATORS
A. MSG (v2.0)

The MSG (v2.0) generator was created by Matthew
Stephenson from the Australian National University in Aus-
tralia. It builds upon a previous level generator, originally
described in [20], [18], which was the runner-up in the 2016
AIBIRDS level generation competition.

It generates levels consisting of a collection of independent
structures, constructed using the twelve block shapes available.
A probability table is used to determine the likelihood of a
particular block shape being selected. Each block shape is
given a probability of selection, with all probabilities summing
to one. Structures generated using this algorithm are made
up of rows, with each row initially consisting of a single
block shape. Blocks within each row can also be randomly
swapped with other block shapes that have the same height.
These structures can have multiple peaks and feature a variety
of placement methods for each row of blocks. Local stability
requirements are enforced and more rows can be added until
the structure reaches the desired size. Global structural stability
is verified using quantitative analysis calculations, described
in [45]. These structures are then distributed throughout the
level, either on the ground (ground structures) or atop floating
platforms (platform structures). The number of ground and
platform structures, as well as their respective width and height
limits, is determined randomly within a pre-defined range.
Ground structures can also be placed on hills of varying
heights, which are created using static terrain blocks.

Once these structures have been placed the level is popu-
lated with pigs, distributed on and within the created struc-
tures. Possible positions for pigs are identified and ranked
based on a combination of structural protection and location
dispersion. Pigs are then placed using this ranking until a
desired number of pigs is reached. Possible TNT positions are
also identified in the same manner, and are ranked based on a
combination of projected damage and location dispersion. The
material of each block within a structure is chosen randomly
using one of several approaches. These include trajectory
analysis (based on shot trajectories from the slingshot to a
pig or TNT), clustering, row grouping, structure grouping and
random selection. The generator then attempts to identify and
protect critical weak points throughout the level. A weak point
is defined as a block within a structure that can be hit directly
by a player’s shot (reachable) and that if removed would
affect a large number of other blocks and/or pigs. Blocks that

2017 AIBIRDS LEVEL GENERATION COMPETITION

B &
)
i
i

Fig. 5: Screenshot of a level from the MSG (v2.0) generator.

are identified as potential weak points can be protected by
either placing additional protection structures next to it, adding
additional support blocks within its structure row, or setting
its material to stone.

The prevalence of certain block materials, as well as the
degree to which pigs are reachable or protected, dictates the
desired ratio and ordering of bird types. The number of birds
is decided using a collection of intelligent agents from the
previous AIBIRDS agent competitions, with the number of
birds required by the best performing agent to solve the level
selected. This ensures that every generated level is solvable,
as an agent has already solved it beforehand. Further details
on this generator can be found in [46]. An example level from
this generator is shown in Figure 5.

B. Funny Quotes ft. Dominoes

The Funny Quotes ft. Dominoes generator was created by
Yuxuan Jiang, Ryota Ishii, Tomohiro Harada and Ruck Tha-
wonmas from Ritsumeikan University in Japan. It generates
levels that consist of a quote, a formula, or a word combined
with dominoes (a series of tall, thin blocks placed next to each
other). It is based in part on a previous generator Funny Quotes
[47] (the defending Champion from the 2016 AIBIRDS Ilevel
generation competition), but to generate a combination of
words and dominoes, Monte Carlo Tree Search (MCTS) [48]
is used. In MCTS, a level is evaluated by the following criteria:

« Readability of generated characters forming a word.

e Variety of blocks.

o Usage of dominoes.

« Proximity of the proportion of the used area to the golden
ratio (1.62).

The structure of each level type is as follows:

1) Quote levels: These levels consist of a popular quote,
with each letter and punctuation made up using smaller blocks.
There are 100 possible quotes, such as “We will be back”,
“Need your Vote”, and “Relax bro!”. Pigs are placed on
top of these quotes. with the number of pigs in each level
selected randomly between the minimum and maximum. If
there is insufficient space to place the minimum number of
pigs required, then additional pigs are placed on a platform
above the slingshot.

Fig. 6: Screenshot of a level from the Funny Quotes ft.
Dominoes generator.

2) Formula-like levels: These levels consist of a simple
mathematical formula using the mathematical symbols +, —,
X, + and =, as well as numbers. Similar to the quote levels,
each of these symbols and numbers are made out of smaller
block shapes. Pigs are used in these formulae to represent
certain numbers (e.g. 8 pigs rather than the number 8). The
number of pigs in each level is selected randomly between the
minimum and maximum.

3) Word-plus-domino levels: The level’s area is divided into
four sub-areas, each of which is then filled with either a word
or dominoes. 75 different words are available, each having
up to six characters, such as “Love”, “Happy”, and “Luck!”.
Pigs are then placed on top of these words, as well as on top
of domino blocks. If the number of initially assigned pigs is
more than the maximum allowed, one pig is removed from
the sub-area with the highest number of pigs. This is repeated
until the number of pigs equals the maximum allowed. If the
number of initially assigned pigs is less than the maximum
allowed, additional pigs are placed on a platform above the
slingshot.

The number of birds is always set to one more than the
number of pigs. Further details on this generator can be found
in [47]. An example level from this generator is shown in
Figure 6.

C. MCTS ft. Blocks

The MCTS ft. Blocks generator was created by Yuxuan
Jiang, Tomohiro Harada and Ruck Thawonmas from Rit-
sumeikan University in Japan. Inspired by the work of Graves
[48], Monte Carlo Tree Search (MCTS) is used to place super-
blocks (a stack of multiple blocks) and pig/TNT islands to
create levels. The main difference between this generator and
Graves’ is that this generator creates a super-block each time
according to a set of rules which ensures stability, but Graves’
generator uses a collection of pre-determined stable structures.
In addition, super-blocks and pig/TNT islands are randomly
placed in the generated levels, while such objects are placed
in a zig-zag fashion with Graves’ generator.

In order to create a super-block, a block shape and a material
are selected randomly from the list of usable blocks. Selected
blocks are then stacked up subject to some rules, sometimes

2017 AIBIRDS LEVEL GENERATION COMPETITION

(B (@Y 0

I
; |
b !ﬁ’w o\ MVYS\ { fﬁ

@

‘

Fig. 7: Screenshot of a level from the MCTS ft. Blocks
generator.

with a pig on the top, to a predefined height. Next, a platform
is added under a super-block. A platform is also added under
a pig (or TNT) to form a pig (or TNT) island. MCTS is used
to find the best combination of super-blocks, pig islands and
TNT islands in the usable level area in terms of maximizing
the following:

e Variety of blocks.

o Usage of pig or TNT islands.

« Proximity of the proportion of the used area to the golden

ratio (1.62).

The number of pigs is always set to the maximum, and the
number of birds is always set to one more than this. The level’s
area is divided into four sub-areas. If the number of initially
assigned pigs is more than the maximum allowed, one pig is
removed from the sub-area with the highest number of pigs.
This is repeated until the number of pigs equals the maximum
allowed. If the number of initially assigned pigs is less than the
maximum allowed, additional pigs are placed on a platform
above the slingshot. An example level from this generator is
shown in Figure 7.

D. Tanager

The Tanager generator was created by Lucas Ferreira from
the University of California in Santa Cruz, United States. It
generates levels based on a genetic algorithm that is capable
of producing stable and solvable levels. This genetic algorithm
starts with an initial population composed of levels with
randomly sampled stacks of blocks, pigs and birds. A fitness
function evaluates stability, playability and structural charac-
teristics of the levels via game simulations, where unplayable
levels are penalized. A tournament method selects levels for
reproduction based on their fitness values. New levels are
created by crossover and mutation operators that try to keep
the level stable. All new levels compose the population of the
next generation, except the worst one that is replaced by the
best level from the current generation (elitism). The generator
stops after a given number of generations or if the fitness of
the best level does not improve after multiple generations.

A level is encoded as a genotype composed of a number of
birds and a list of stacks of blocks. The first element encodes
the number of birds and all the others encode stacks. A

Fig. 8: Screenshot of a level from the Tanager generator.

block can be either elementary or composed, where elementary
blocks are unitary pieces connected to form composed ones.
Elementary or composed blocks can also be duplicated, and
in this case they are added in the stack beside another one
exactly like them. Each block is represented by a pair (i,b),
where 7 is an integer representing the index of the block and
b is a Boolean representing if that block is duplicated or not.
The number of stacks can be different for each level and the
stack sizes can change within a level.

A fitness function is used to measure if a level is fully stable
and if the number of birds is enough to kill all the pigs. These
two metrics are calculated using a game simulation with an
intelligent agent. Stability is measured by the total velocity of
the blocks during the first few seconds of the simulation. A
level is only considered feasible if the number of pigs p; at
the end of the simulation is equal to zero. The fitness function
is mathematically described by Equation 1.

fitness(z) = ||bp* B] — By|+|[ln* L] — Ly| +ps +s (1)

In this function, B is a constant that defines the maximum
number of birds allowed in a level, B, is the number of
birds used during the simulation. The constant L defines the
maximum number of blocks allowed in a level and L is the
number of blocks in the beginning of the simulation. [,, and
b, represent the percentage of blocks in the level and the
percentage of birds that is needed to kill all pigs respectively.
s measures the stability of all blocks in the level.

The first term of the equation calculates the distance be-
tween the number of birds that should be used to kill all the
pigs and the number that was actually used. The second term
calculates the distance between the number of blocks desired
in the level and the number of blocks that the level started
with. If these terms are both zero, the level has all the desired
characteristics. Further details on this generator can be found
in [49]. An example level from this generator is shown in
Figure 8.

E. Scrap Maps

The Scrap Maps generator was created by Ryota Ishii,
Tomohiro Harada and Ruck Thawonmas from Ritsumeikan

2017 AIBIRDS LEVEL GENERATION COMPETITION

Fig. 9: Screenshot of a level from the Scrap Maps generator.

University in Japan. The Unity physics engine is used to
simulate blocks falling from the sky, which are then saved
to give the final level appearance.

A large collection of blocks and pigs are randomly selected
from the list of usable objects each time a level is generated.
These selected blocks and pigs are then temporarily placed at
the top of the level (or the sky), each with a random position.
The Science Birds game engine is then used to simulate these
objects falling from the sky to ground. For this to work
successfully, the game’s settings are changed such that the
blocks cannot be broken and the pigs cannot be killed. When
all objects have fallen to the ground, the position and rotation
of all blocks and pigs is saved. The number of pigs in a level is
chosen randomly between the minimum and maximum values
allowed. The number of birds is fixed to seven. The type of
each bird is selected randomly. An example level from this
generator is shown in Figure 9.

V. RESULTS

As this competition was held jointly at CIG17 and IJCAI17,
judging panels were used at both conferences. We had 7
panels of independent judges in Melbourne (IJCAI17) and 4
panels of independent judges in New York (CIG17). The level
selection process for each generator was carried out separately
beforehand. Judging panels were given the exact same levels
from each generator, and were presented them in the exact
same order. Each judging panel evaluated all 50 levels and
reported the results back to the organisers in terms of scores
between 0 and 10 for each of the five different generators,
for each of the evaluation categories (Fun, Creativity and
Difficulty). The identity of the generators and which levels
belonged to which generator was kept a secret until after
the judging scores were all aggregated and the ranking was
finalised. It was vital to make sure this process was absolutely
fair, as two of the five generators were from members of
the organisation committee. Total and median scores for each
generator are presented on the left side of Table I. A box plot
for each generator based on the final scores from all judging
panels is shown in Figure 10.

The Fun ratings for each generator determined the overall
competition winner, with Creativity and Difficulty being ad-
ditional secondary categories. The generator with the highest

Fun rating was MSG (v2.0), with Funny Quotes ft. Dominoes
second, and MCTS ft. Blocks third. Likewise for the Creativity
category, MSG (v2.0) was the highest rated, followed by
Funny Quotes ft. Dominoes and MCTS ft. Blocks in second
and third place respectively. However, the Difficulty category
was won by Funny Quotes ft. Dominoes, an improved version
of last year’s overall winner, with MCTS ft. Blocks second
and MSG (v2.0) third.

Ten of the eleven judging panels rated MSG (v2.0) highest
in terms of Fun, whilst one judging panel who liked the
Scrap Maps generator the most rated MSG (v2.0) second best.
Therefore, the MSG (v2.0) generator was the clear winner,
with the Funny Quotes ft. Dominoes generator in second place,
the MCTS ft. Blocks generator in third place, the Tanager
generator in fourth place, and the Scrap Maps generator in
fifth place.

A. Feature comparison

By comparing the properties of the generated levels against
the judge’s scores, we can attempt to identify whether there
are certain level characteristics that may result in greater
player enjoyment. There are four common measures that have
been used previously to evaluate the expressivity of a level
generator [50], [51]: frequency, linearity, density and leniency.
Leniency is a measure of how difficult a level is to complete,
and is often the hardest property to quantify and analyse.
As the difficulty of the levels was already considered by
judges during their evaluation, we chose not to investigate it
further (agent performance could also have been used but was
deemed less reliable than humans). Linearity represents the
overall “profile” of a level, and is measured with the R? value
from a linear regression calculation using the centre point
of all game features present in a level’s XML description.
Density represents the compactness of a level and is calculated
based on how much of a level’s available space is taken up
by objects. Frequency represents the number of certain level
features that are present within a level. While there are many
different and complex features for an Angry Birds level [52]
that can be compared using frequency analysis, we decided to
only focus on the basic features due to the limited size of our
test set. The level features we considered were:

o Number of pigs.

o Number of blocks (for each material).
« Number of birds (for each type).

o Number of TNT boxes.

Due to the fact that some of the generated levels, partic-
ularly those created by the Scrap Maps generator, moved or
responded to the physics of the game after initialisation, all
values were recorded from levels after any initial movement
had ceased. The average frequency of each feature across
all 10 judged levels for each generator (normalised for each
feature type separately) are presented in Figure 11. The
average linearity and density values for each generator across
these same levels are presented on the right side of Table I.

Spearman’s rank correlation coefficients were calculated
comparing the judging panel’s rankings for each generator
against the frequency of our selected level features, as well

2017 AIBIRDS LEVEL GENERATION COMPETITION

TABLE I:
GENERATOR TOTAL (MEDIAN) SCORES AND EXPRESSIVITY ANALYSIS RESULTS

Generator Fun Creativity Difficulty Final Linearity Density
MSG (v2.0) 80.5 (8) 72.9 (7) 59.6 (5) 213.0 (20) 0.0516 28.86%
Funny Quotes ft. Dominoes | 60.2 (5) 60.4 (6) 78.4 (8) 199.0 (19) 0.0603 37.57%
MCTS ft. Blocks 52.2 (5) 449 4) 69.1 (6) 166.2 (16) 0.0216 15.66%
Tanager 44.5 (3) 37.7 (3) 46.7 (4) 128.9 (11) 0.0567 18.81%
Scrap Maps 28.0 (2) 28.0 (2) 21.0 (2) 77.0 (7) 0.0421 29.90%
30 0.8
07 B AIMSG (v2.0)
25) B Funny Quotes ft. Dominoes
0.6 B MCTS ft. Blocks
o 20 0.5 u Tanager
:o: I Scrap Maps
v
® 15
]
10
|
5
0 L pigs wood ice stone red blue vyellow black white TNT
MSG (v2.0) Funny Quotes MCTS ft. Blocks Tanager Scrap Maps blocks blocks blocks birds birds birds birds birds
ft. Dominoes Level Features

Fig. 10: Box plot for each generator based on the final scores
from all judging panels.

as for both the density and linearity of the judged levels.
Unfortunately, due to the limited number of levels that were
judged for each generator, and the fact that each generator’s
levels vary so dramatically in design, it is unclear whether any
identified correlations are merely due to random variation. For
example, there was a high correlation (p = 0.77) between the
number of TNT boxes in a level and the Fun score given by
judges. However, this is likely due to the fact that only the
MSG (v2.0) and MCTS ft. Blocks generators created levels
that contained TNT, and the former far more than the latter.
Another strong correlation (p = 0.93) was between the number
of pigs and the Difficulty score for a level. This again could
simply be due to the fact that the top two generators in this
category, Funny Quotes ft. Dominoes and MCTS ft. Blocks,
usually always give levels with the maximum number of pigs
possible. You would also assume that the number of birds
given to the player would impact the Difficulty score for a
level, but this was not the case. It would seem that either Angry
Birds is far too complex a game to have the enjoyment and
challenge of its levels identified using only simple properties,
or that not enough data is currently available for a reliable
analysis. Bearing this in mind, general overall trends did seem
to indicate that judges preferred levels with more pigs, blocks
and TNT (i.e. more objects to interact with).

VI. DISCUSSION
A. Competition overview and limitations

Overall the competition went fairly smoothly, with all
generators running successfully and levels displaying correctly.
However, there are several changes or improvements that we

Fig. 11: Normalised average number of features (frequency
measure) for each generator’s judged levels.

feel could make it even better, particularly with how generators
are compared. While there are defined evaluation categories,
the values attributed to each level is currently decided solely
by the judging panels. Deciding whether a generator creates
levels that are deemed “too similar” is also left to the discretion
of the judges. Ideally, it would be better to have a more
reliable and unbiased means of scoring generators and the
levels they create. However, this is a very difficult task, as
there is currently no effective way of evaluating a level for
complex concepts such as enjoyment. We can also see that
the generator rankings for the Fun and Creativity categories
are identical, suggesting that perhaps judges were slightly
confused about the exact meaning of this latter category.
Introducing additional criteria such as aesthetic appeal or level
variety might help refine this evaluation process and allow
different generators to focus on different level aspects. It may
also be beneficial to ask judges why they preferred certain
levels over others using either a questionnaire or ranking
system. This would require more of the judge’s time and
additional human resources in interpreting the responses, but
may help us develop better generators in the future.

B. Generator comparison

From the competition’s results it seems very clear that
the MSG (v2.0) generator was favoured by the majority of
judging panels. While this generator competed in the previous
year’s competition it was only rated second out of three
participating generators, losing to the previous version of the
Funny Quotes generator. Its newfound success this year was
likely due to a number of key improvements in terms of how
levels were designed, as well as additional features such as

2017 AIBIRDS LEVEL GENERATION COMPETITION

TNT placement, intelligent material/bird type selection, and
using agents to guarantee solvability. The Funny Quotes ft.
Dominoes generator was ranked second overall, but did win
the Difficulty category. This was likely due to its sophisticated
difficulty calculations, and the fact that the agents used by
the MSG (v2.0) generator to playtest levels beforehand often
resulted in giving the player more birds than was necessary.
Scrap Maps was easily the least preferred generator which was
likely caused by its unconventional level design, as well as the
fact that many blocks and pigs would move or be destroyed
after the level had initialised. The Tanager generator was also
rated poorly which was probably due to the fact that it was not
fully completed before the competition was run, and so could
only produce structures made of wooden blocks and would
always give the player only red birds.

C. Combining AIBIRDS competitions

There are several ways in which the two AIBIRDS com-
petitions (agent and level generation) could be combined. As
previously mentioned, the agents provided by the AIBIRDS
agent competition can be used to evaluate and test the levels
created by the generators. These agents could also be used
to test a generated level against different playstyles, or to
determine whether it is currently too hard or too easy based
on the number of agents that can solve it and how long it
takes them. Whilst the benefits that an agent can provide to
a level generator should be clear, a level generator can also
be used to improve the performance of Al agents. One major
advantage of having level generators available is that it is now
possible to create large numbers of training and test levels
for developing improved Al agents for the AIBIRDS agent
competition. In particular, agents based on deep reinforcement
learning, a technique that has taken much of Al by storm and
is very successful for many other games, would benefit greatly
from a large number of available levels. Generating levels also
provides a means of evaluating an agent beyond the original
hand-designed levels that the game currently provides. In
fact, several levels created by this year’s submitted generators
were converted and used in the most recent AIBIRDS agent
competition. We also hope to be able to link both the AIBIRDS
agent and level generation competitions in the future, perhaps
with agents trying to beat generated levels and generators
trying to create levels that are difficult for agents.

D. Generator improvements

While the depth and range of levels generated by the entries
to this year’s competition are very impressive, we believe that
there are several ways they could be improved in the future. A
typical improvement for PLG-based work is to create genera-
tors that can adapt to the skills and preferences of individual
players [53], [54]. Generators would ideally be able to identify
which “types” of levels a player is enjoying the most or which
have the right amount of difficulty, and would then generate
personalised levels that suit this player more. This would be
challenging to perform in a competition style scenario, but
would not be impossible. Another useful improvement would
be to generate levels that require planning or creative reasoning

to solve. A possible means of measuring this was postulated in
[46], where it was suggested that levels which more advanced
agents can solve but less skilled agents cannot, might be more
likely to engage players as the solution would probably not be
immediately apparent. Generators could also be more flexible
in terms of the features their levels contain, allowing them to
fulfil more specific designer requirements. Ideally an end goal
for this work would be to develop generators that can create
levels which are indistinguishable from “real” hand-designed
levels. This is an extremely challenging task, especially for
a game as complex and varied as Angry Birds, but would
be an incredibly valuable scientific and industry resource if
it could be achieved. Physical level generators, such as those
submitted to this competition, might also have some additional
real-world uses for automated design and construction.

VII. CONCLUSION

In this paper we have presented an overview of the sec-
ond AIBIRDS level generation competition. The complexity
and variety of levels created by this year’s generators was
significantly higher than in last year’s competition. A greater
number of judges were also used for evaluating levels from
two separate locations, and the feedback received from the
wider Al and video game research communities was extremely
positive. We would also like to thank all members of our
organising committee, competition entrants, judging panel
volunteers, as well as all conference attendees at both CIG17
and IJCAIl7 for their contribution and making this event
possible. We hope to continue this competition next year and
encourage all interested teams to participate in this exciting
challenge.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, 1. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484-489, 2016.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” [EEE
Transactions on Computational Intelligence and Al in Games, vol. 3,
no. 3, pp. 172-186, 2011.

[3] M. Hendrikx, S. Meijer, J. V. D. Velden, and A. Iosup, ‘“Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. 1, pp. 1-22, 2013.

[4] S. Dahlskog and J. Togelius, “Patterns and procedural content genera-
tion: Revisiting Mario in world 1 level 1,” in Proceedings of the First
Workshop on Design Patterns in Games, 2012, pp. 1:1-1:8.

[5] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelback, G. N.
Yannakakis, and C. Grappiolo, “Controllable procedural map generation
via multiobjective evolution,” Genetic Programming and Evolvable
Machines, vol. 14, no. 2, pp. 245-277, 2013.

[6] R. Lara-Cabrera, M. Nogueira-Collazo, C. Cotta, and A. J. Fernndez-
Leiva, “Procedural content generation for real-time strategy games,” In-
ternational Journal of Interactive Multimedia and Artificial Intelligence,
pp. 4048, 2015.

[7]1 L. Ferreira, L. Pereira, and C. Toledo, “A multi-population genetic
algorithm for procedural generation of levels for platform games,”
in Proceedings of the Companion Publication of the 2014 Annual
Conference on Genetic and Evolutionary Computation, 2014, pp. 45-46.

[8] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing game,” in
Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, 2011, pp. 395-402.

2017 AIBIRDS LEVEL GENERATION COMPETITION

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

M. Cook and S. Colton, “Multi-faceted evolution of simple arcade
games,” in Computational Intelligence and Games (CIG), 2011 IEEE
Conference on, 2011, Conference Proceedings, pp. 289-296.

V. Valtchanov and J. A. Brown, “Evolving dungeon crawler levels
with relative placement,” in The Fifth International C* Conference on
Computer Science and Software Engineering, 2012, pp. 27-35.

Q. Xu, J. Tremblay, and C. Verbrugge, “Generative methods for guard
and camera placement in stealth games,” in AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 2014, pp.
87-93.

D. Stammer, H. Mannheim, T. Gnther, and M. Preuss, ‘“Player-adaptive
Spelunky level generation,” in 2015 IEEE Conference on Computational
Intelligence and Games (CIG), 2015, pp. 130-137.

A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, “General
video game level generation,” in Proceedings of the Genetic and
Evolutionary Computation Conference 2016, ser. GECCO ’16, 2016,
pp. 253-259.

X. Neufeld, S. Mostaghim, and D. Perez-Liebana, “Procedural level gen-
eration with answer set programming for general video game playing,”
in 2015 7th Computer Science and Electronic Engineering Conference
(CEEC), 2015, pp. 207-212.

N. Shaker, M. Shaker, and J. Togelius, “Evolving playable content for
Cut the Rope through a simulation-based approach,” in Proceedings of
the Ninth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2013, pp. 72-78.

M. Shaker, N. Shaker, J. Togelius, and M. Abou-Zleikha, “A progressive
approach to content generation,” in /8th European Conference on the
Applications of Evolutionary Computation, EvoApplications, 2015, pp.
381-393.

L. T. Pereira and C. F. M. Toledo, “Speeding up search-based algorithms
for level generation in physics-based puzzle games,” International
Journal on Artificial Intelligence Tools, vol. 26, no. 05, 2017.

M. Stephenson and J. Renz, “Procedural generation of levels for Angry
Birds style physics games,” in Twelfth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE-16), 2016, pp.
225-231.

L. T. Pereira, C. Toledo, L. N. Ferreira, and L. H. S. Lelis, “Learning
to speed up evolutionary content generation in physics-based puzzle
games,” in 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence (ICTAI), 2016, pp. 901-907.

M. Stephenson and J. Renz, “Procedural generation of complex stable
structures for Angry Birds levels,” in 2016 IEEE Conference on Com-
putational Intelligence and Games (CIG), 2016, pp. 1-8.

L. Ferreira and C. Toledo, “Generating levels for physics-based puzzle
games with estimation of distribution algorithms,” in Proceedings of the
11th Conference on Advances in Computer Entertainment Technology,
2014, pp. 25:1-25:6.

M. Kaidan, T. Harada, C. Y. Chu, and R. Thawonmas, ‘“Procedural
generation of Angry Birds levels with adjustable difficulty,” in IEEE
Congress on Evolutionary Computation (CEC), 2016, pp. 1311-1316.
L. Ferreira and C. Toledo, “A search-based approach for generating
Angry Birds levels,” in Computational Intelligence and Games (CIG),
2014 IEEE Conference on, 2014, pp. 1-8.

M. Shaker, M. H. Sarhan, O. A. Naameh, N. Shaker, and J. Togelius,
“Automatic generation and analysis of physics-based puzzle games,” in
Computational Intelligence in Games (CIG), 2013 IEEE Conference on,
2013, pp. 1-8.

AIBIRDS, “AIBIRDS agent benchmarks,”
https://aibirds.org/benchmarks.html, 2017, accessed: 2017-11-14.

J. Renz, “AIBIRDS: The Angry Birds artificial intelligence competition,”
in AAAI Conference on Artificial Intelligence, 2015, pp. 4326-4327.

J. Togelius, N. Shaker, S. Karakovskiy, and G. Yannakakis, “The Mario
AI championship 2009-2012,” Al Magazine, vol. 34, pp. 89-92, 2013.
S. Karakovskiy and J. Togelius, “The Mario Al benchmark and com-
petitions,” IEEE Transactions on Computational Intelligence and Al in
Games, vol. 4, no. 1, pp. 55-67, 2012.

N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, and R. Baumgarten, “The 2010 Mario AI championship: Level
generation track,” IEEE Transactions on Computational Intelligence and
Al in Games, vol. 3, no. 4, pp. 332-347, 2011.

S. Ontan, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game Al research and com-
petition in StarCraft,” IEEE Transactions on Computational Intelligence
and Al in Games, vol. 5, no. 4, pp. 293-311, 2013.

M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jakowski, “ViZ-
Doom: A Doom-based Al research platform for visual reinforcement

(32]

(33]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

(471

[48]

[49]

(501

[51]

[52]

[53]

[54]

learning,” in 2016 IEEE Conference on Computational Intelligence and
Games (CIG), 2016, pp. 1-8.

R. Prada, P. Lopes, J. Catarino, J. Quitrio, and F. S. Melo, “The
geometry friends game Al competition,” in 2015 IEEE Conference on
Computational Intelligence and Games (CIG), 2015, pp. 431-438.

F. Lu, K. Yamamoto, L. H. Nomura, S. Mizuno, Y. Lee, and R. Tha-
wonmas, “Fighting game artificial intelligence competition platform,” in
2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE),
2013, pp. 320-323.

J. Renz, X. Ge, S. Gould, and P. Zhang, “The Angry Birds Al
competition,” AI Magazine, vol. 36, no. 2, pp. 85-87, 2015.

D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Coutoux, J. Lee, C. U. Lim, and T. Thompson, “The 2014 general
video game playing competition,” IEEE Transactions on Computational
Intelligence and Al in Games, vol. 8, no. 3, pp. 229-243, 2016.

R. D. Gaina, D. Prez-Libana, and S. M. Lucas, “General video game for
2 players: Framework and competition,” in 2016 8th Computer Science
and Electronic Engineering (CEEC), 2016, pp. 186—191.

R. D. Gaina, A. Couetoux, D. Soemers, M. H. M. Winands,
T. Vodopivec, F. Kirchgebner, J. Liu, S. M. Lucas, and D. Perez,
“The 2016 two-player GVGAI competition,” IEEE Transactions on
Computational Intelligence and Al in Games, 2017.

D. Perez-Liebana, S. Samothrakis, J. Togelius, S. Lucas, and T. Schaul,
“General video game AI: Competition, challenges, and opportunities,”
in 30th AAAI Conference on Artificial Intelligence, AAAI 2016. AAAI
press, 2016, pp. 4335-4337.

T. S. Nielsen, G. A. B. Barros, J. Togelius, and M. J. Nelson, “Towards
generating arcade game rules with VGDL,” in 2015 IEEE Conference
on Computational Intelligence and Games (CIG), 2015, pp. 185-192.
D. Perez-Liebana, M. Stephenson, R. D. Gaina, J. Renz, and S. M.
Lucas, “Introducing real world physics and macro-actions to general
video game ai,” in 2017 IEEE Conference on Computational Intelligence
and Games (CIG), 2017, pp. 248-255.

“Angry Birds game,” https://www.angrybirds.com/games/angry-birds/,
accessed: 2017-11-14.

J. Renz, X. Ge, R. Verma, and P. Zhang, “Angry Birds as a challenge
for artificial intelligence,” in AAAI Conference on Artificial Intelligence,
2016, pp. 4338-4339.

L. N. Ferreira, “Science birds,” https://github.com/lucasnfe/Science-
Birds, 2017, accessed: 2017-12-12.

AIBIRDS, “AIBIRDS homepage,” https://aibirds.org, 2017, accessed:
2017-11-14.

A. G. M. Blum and B. Neumann, “A stability test for configurations of
blocks,” Massachusetts Institute of Technology, Tech. Rep., 1970.

M. Stephenson and J. Renz, “Generating varied, stable and solvable
levels for Angry Birds style physics games,” in 2017 IEEE Conference
on Computational Intelligence and Games (CIG), 2017, pp. 288-295.
Y. Jiang, T. Harada, and R. Thawonmas, “Procedural generation of
Angry Birds fun levels using pattern-struct and preset-model,” in 2017
IEEE Conference on Computational Intelligence and Games (CIG),
2017, pp. 154-161.

M. Graves, “Procedural content generation of Angry Birds levels using
monte carlo tree search,” Master of Science in Engineering Thesis, The
University of Texas at Austin, 2016.

L. N. Ferreira and C. Toledo, “Tanager: A generator of feasible and
engaging levels for Angry Birds,” IEEE Transactions on Computational
Intelligence and Al in Games, 2017.

G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games, 2010, pp. 4:1-4:7.

B. Horn, S. Dahlskog, N. Shaker, G. Smith, and J. Togelius, “A
comparative evaluation of procedural level generators in the Mario Al
framework,” in Foundations of Digital Games 2014, 2014, pp. 1-8.

M. Stephenson and J. Renz, “Creating a hyper-agent for solving angry
birds levels,” in AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, 2017.

G. N. Yannakakis and J. Togelius, “Experience-driven procedural content
generation,” IEEE Transactions on Affective Computing, vol. 2, no. 3,
pp. 147-161, 2011.

C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player
experience for content creation,” IEEE Transactions on Computational
Intelligence and Al in Games, vol. 2, no. 1, pp. 54-67, 2010.

