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Abstract
In this paper we present several proofs for the com-
putational complexity of the physics-based video
game Angry Birds. We are able to demonstrate
that solving levels for different versions of Angry
Birds is either NP-hard, PSPACE-hard, PSPACE-
complete or EXPTIME-hard, depending on the
maximum number of birds available and whether
the game engine is deterministic or stochastic. We
believe that this is the first time that a single-player
video game has been proven EXPTIME-hard.

1 Introduction
In this paper, we analyse the complexity of playing different
variants of the video game Angry Birds, which is a physics-
based puzzle game with a semi-realistic environment, see
Figure 1. The objective of each level in this game is to hit
a number of pre-defined targets (pigs) with a certain num-
ber of shots (birds) taken from a fixed location (slingshot),
often utilising or avoiding blocks and other game elements
to achieve this. This game has been heavily researched by
the AI community over the past decade, due to the complex
planning and physical reasoning required to solve its levels,
similar to that of many real-world tasks [Renz et al., 2019].

While there has been an extensive amount of research
into the computational complexity of video games over the
past decade [Demaine et al., 2016a; Demaine et al., 2016b;
Forišek, 2010; Viglietta, 2014b; Gualà et al., 2014; Bosboom
et al., 2018], Angry Birds presents a very different problem
from those typically studied. In physics-based environments
the attributes and parameters of various objects are often im-
precise or unknown, making it very difficult to accurately pre-
dict the outcome of any action taken. Angry Birds also differs
from many previously investigated games in terms of its con-
trol scheme, as the player always makes their shots from the
same location within each level and can only vary the speed
and angle at which each bird travels from it. This heavily re-
duces the amount of control that the player has over the bird’s
movement, with the game’s physics engine being used to de-
termine the outcome of shots after they are made.

∗This paper is an extended abstract of an article in Artificial In-
telligence [Stephenson et al., 2020].

Figure 1: Screenshot of a level for the Angry Birds video game.

2 Angry Birds Game Definition
The decision problem we are considering can be formalised
as: Given an Angry Birds level description, is there a strategy
that always results in all pigs being killed? The complexity
of this problem depends on two key factors:

Number of Birds. The first factor is whether the maximum
number of birds that the player can have is polynomial or
exponential relative to the size of the level description.

Probabilistic Model. The second factor is whether the
physics engine used by the game is deterministic or stochas-
tic. For Angry Birds, the source of this stochasticity comes
from a random amount of noise that is included when col-
lisions occur within the game’s physics-engine, causing the
object(s) involved to move slightly differently each time.

Table 1 shows how altering these factors within the Angry
Birds game affects its complexity. For each of our subsequent
complexity proofs, we will use the appropriate version of An-
gry Birds as defined by this table.

3 Gates
Before presenting our complexity proofs we first define three
different “gates”, that help dictate the outcomes of shots taken
by the player. These gates are constructed using Angry Birds
game entities and are designed to emulate the functionality
of logic gates. By arranging multiple gates within a level, we
can obtain equivalent versions of known complexity problems
within the Angry Birds game environment.

Selector Gate. The Selector gate implementation for Angry
Birds is shown in Figure 2. The Selector gate can exist in one
of two states, “select-left” or “select-right”, and essentially
mimics the behaviour of a 2-output demultiplexer. A bird
which enters a Selector gate at LI or RI , will exit at LO or
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Name No. Birds Model Complexity
ABPD Polynomial Deterministic NP-hard
ABED Exponential Deterministic PSPACE-complete
ABPS Polynomial Stochastic PSPACE-hard
ABES Exponential Stochastic EXPTIME-hard

Table 1: Complexity results summary.

(a) (b)

Figure 2: Models of Selector gate (a) in the “select-left” position
and (b) in the “select-right” position.

RO, and set the gate to the select-left or select-right position
respectively. A bird which enters a Selector gate at TI will
exit at either TL or TR based on the gate’s current state.

Automatically Unsetting Transfer Gate. The automati-
cally unsetting transfer (AUT) gate implementation for Angry
Birds is shown in Figure 3 (a/b). The AUT gate can exist in
one of two states, “select-left” or “select-right”. A bird which
enters an AUT gate at TI will exit at TL and set the gate to the
select-right position, if and only if the gate is in the select-left
position, otherwise the bird will exit at TR and not change the
gate’s position. A bird which enters an AUT gate at LI will
exit at LO and set the gate to the select-left position.

Random Gate. The Random gate implementation for An-
gry Birds is shown in Figure 3 (c). The Random gate can only
be used in variants of Angry Birds with a stochastic game en-
gine, and essentially mimics the behaviour of a random bi-
nary splitter. A bird which enters a Random gate at T has a
non-zero probability for exiting at both L and R.

4 PSPACE-Completeness of ABED
For our proof of PSPACE-completeness, we will reduce from
the PSPACE-complete problem TQBF, which consists of de-
termining if a given quantified 3-CNF Boolean formula is
“true”. To demonstrate that Angry Birds is PSPACE-hard,
we present a framework for converting any given quantified
Boolean formula into an Angry Birds level, which can only
be solved if the quantified Boolean formula is true. Our proof
of PSPACE-hardness is based on a heavily modified version
of the general framework described in [Aloupis et al., 2014;
Viglietta, 2014a; Viglietta, 2014b]. This framework uses a
systematic procedure to verify if a quantified Boolean for-
mula is true, provided that several “Gadgets” can be con-
structed within the game’s environment. A gadget is a col-
lection of several interconnected gates which serves a distinct
purpose within the framework. The same gadget can often oc-
cur many times within a single framework (i.e. frameworks
are made up of gadgets, and gadgets are made up of gates).

(a) (b) (c)

Figure 3: Models of AUT gate (a) in the “select-left” position and
(b) in the “select-right” position. Model of Random gate (c).

The framework for this proof uses an Existential Quanti-
fier (EQ) gadget, a Universal Quantifier (UQ) gadget and a
Clause gadget, which can be used to mimic the properties of
each variable (be it existentially or universally quantified) and
clause in a quantified 3-CNF Boolean formula.

While we will still be using this same TQBF verification
process for our proposed Angry Birds proof, the overall de-
sign of the framework for applying this procedure will be
significantly different from those of previous game exam-
ples. This is mostly due to the fact that Angry Birds does not
have a single controllable “Avatar”, and thus has no easy way
of achieving a sense of “player traversal”. This means that
cyclic loops within the framework are not possible (all birds
must always fall downwards). Figure 4 shows our modified
TQBF framework design for Angry Birds, using the quanti-
fied Boolean formula ∃x∀y∃z∀w((x ∨ y ∨ w) ∧ (y ∨ ¬z ∨
¬w)∧ (¬x∨¬y ∨ z)) as an example. One particular point of
difference is that the UQ gadget has been split into two sub-
gadgets, referred to as the UQ-F and UQ-T gadgets. There is
also a Finish gadget, which the player must be able to “pass
through” in order to solve the level and will be permanently
blocked if the player performs any “illegal” actions.

Rather than a complete formal proof we will instead at-
tempt to give a general overview of each gadget’s design and
function within Angry Birds, and how they can be combined
to create an equivalent representation of any quantified 3-
CNF Boolean formula.
Definition 1. (enabled, disabled, current, next, next adjacent,
next UQ-F, previous, first, last): Each gadget has two possi-
ble states, “enabled” and “disabled”. The “current” gadget
(Qi) is the (vertically) lowest enabled gadget in our general
framework diagram (GFD, see Figure 4). The “next” gadget
(Qi+1) for the current gadget is indicated by the arrows in
our GFD, which represent the scope of each quantifier. For
each UQ-F gadget there are two possible next gadgets, the
next gadget for the UQ-T gadget associated with its variable
(horizontal output arrow) referred to as the “next adjacent”
gadget, and the UQ-F gadget directly below it (vertical out-
put arrow) referred to as the “next UQ-F” gadget. The “previ-
ous” gadget (Qi−1) refers to the most recent current gadget.
We also define the terms “first” gadget and “last” gadget with
respect to the vertical position of specific gadget types in our
GFD. The highest of a particular gadget type is the first gad-
get of that type, whilst the lowest is the last gadget.

EQ Gadget. If an EQ gadget is enabled then the player can
use it to set the value of its associated variable to either posi-
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Figure 4: General framework
diagram (GFD) for ABED.

Figure 5: General framework
diagram for ABES.

tive or negative. Doing this disables the EQ gadget and allows
the player to enable the next gadget.

A schematic representation of how such a gadget can be
constructed in Angry Birds using our defined gates is shown
in Figure 6. Squares represent Selector gates, while circles
represent AUT gates. The positions of arrows into or out of
each gate correspond to the entrances and exits shown on the
key. All AUT gates in this gadget have traverse paths that
can be shot into by the player. An EQ gadget is enabled if
A1, A2, S1 and S2 are open. Full schematic diagrams for all
other gadgets are presented in [Stephenson et al., 2020].

UQ-T Gadget. If a UQ-T gadget is enabled then it automat-
ically sets the value of its associated variable to positive. The
player can then enable the next gadget which also disables the
UQ-T gadget.

UQ-F Gadget. If a UQ-F gadget is enabled then it alter-
nates between allowing the player to do either of the follow-
ing two actions: (A) the player can set the value of its associ-
ated variable to negative, which disables the UQ-F gadget and
allows the player to enable the next adjacent gadget; or (B)
the player can disable the UQ-F gadget and enable the next
UQ-F gadget. The last UQ-F gadget does not have a next
UQ-F gadget, and enabling this gadget will instead attempt to
pass through the Finish gadget and solve the level.

Clause Gadget. A Clause gadget is “activated” if and only
if its associated clause is satisfied (i.e. at least one of the liter-
als in the associated clause is true). The level can be solved if
and only if all Clause gadgets can be activated for each possi-
ble value combination of all universally quantified variables
(abbreviated to UQVC). If the current gadget is a Clause gad-
get that is both enabled and activated, then the next gadget
can be enabled.

Finish Gadget. The Finish gadget can be enabled if and
only if all Clause gadgets are both enabled and activated.

Framework Design. The gadget associated with the quan-
tifier with the largest scope (leftmost quantifier in Boolean

Figure 6: Structure of the Existential Quantifier gadget in ABED.

Formula) is initially enabled (gadget pointed to by Start la-
bel in Figure 4), with the UQ-T version of the gadget be-
ing enabled if it is a universal quantifier, whilst all other gad-
gets are disabled. The player can enable the first UQ-F gad-
get at any time, but doing so when the Finish gadget is dis-
abled will put the level into an unsolvable state. Enabling the
first UQ-F gadget also disables all Clause and Finish gadgets.
This action of enabling the first UQ-F gadget begins a new
“framework cycle”, with each framework cycle testing a spe-
cific UQVC. Once all possible UQVCs have been tested the
player can pass through the Finish gadget and solve the level,
assuming that the level is not in an unsolvable state.

Any given TQBF problem can be expressed as an ABED
level in this form, and solving this level is equivalent to find-
ing a solution to this problem. Thus, ABED is PSPACE-hard.
We can extend this proof to PSPACE-completeness, by show-
ing that ABED is in NPSPACE along with Savitch’s theorem
[Arora and Barak, 2009] that NPSPACE = PSPACE.

5 NP-Hardness of ABPD
By using a similar framework, we can also show that solving
levels for ABPD is NP-hard. Our proof of NP-hardness re-
duces from the NP-complete problem 3-SAT, which involves
deciding whether a given 3-CNF Boolean formula can be sat-
isfied. Any 3-CNF Boolean formula can be represented using
our TQBF framework by making all variables existentially
quantified. This removes the need for any UQ-F or UQ-T
gadgets, relying only on the EQ and Clause gadgets. The
Finish gadget is also replaced by a single pig, that the player
can kill if all clause gadgets are enabled and activated.

6 PSPACE-Hardness of ABPS
Another variant of the TQBF framework can also be used to
show that solving levels for ABPS is PSPACE-hard. In this
version all UQ-F gadgets are removed, and UQ-T gadgets are
replaced by a new UQ-R gadget. These UQ-R gadgets are
similar to the UQ-T gadget, except that when they are enabled
they randomly set the value of their associated variable to ei-
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ther positive or negative. The Finish gadget is also replaced
by a single pig, similar to the previous ABPD proof.

The player can solve the level if all Clause gadgets are ac-
tivated after the player has selected a value for each existen-
tially quantified variable, and the value for each universally
quantified variable has been (randomly) set to positive or neg-
ative. In order to guarantee that such a level can be solved, it
must be possible to solve the level regardless of the outcome
of the UQ-R gadgets. Essentially, we are no longer testing
out every possible UQVC but are testing a single possible
UQVC that is selected at random, which is equivalent for the
purposes of determining if a level is always solvable.

7 EXPTIME-hardness of ABES
To show that solving levels for ABES is EXPTIME-hard
we will reduce from a known EXPTIME-complete decision
problem. For our proof we will use the problem of determin-
ing whether a player can force a victory for the two-player
game G2, as shown in [Stockmeyer and Chandra, 1979].

While many classical two-player games such as Chess,
Go and Checkers contain the mechanics necessary to mimic
games such as G2, Angry Birds does not on first glance ap-
pear to be a suitable choice. Angry Birds is a single-player
game and so does not inherently feature an opponent, in the
traditional sense, against which to play. However, we can in-
stead use the stochasticity of the physics engine as the oppo-
nent we will be facing. This stochasticity allows us to create
situations where the player is uncertain about the exact out-
come of shots that they make. By utilising this element of un-
certainty in shot outcomes, we can create a “random” oppo-
nent, that will make random moves after each of the player’s
moves. Even though an opponent that just makes random
moves may seem very easy to beat, the complexity of deter-
mining whether the player can force a victory for a given G2
instance is the same when facing both an opponent that plays
optimally and one that plays randomly, as it is always possi-
ble that the random opponent will, by pure chance, actually
play optimally (i.e. the player must assume Murphy’s Law).

For our proof of EXPTIME-hardness we describe a method
of combining several new types of gadget to create an ABES
representation for any given setup of the game G2. A gen-
eral framework diagram showing how these gadgets connect
within the level space is shown in Figure 5, which uses the
example Boolean formulas (x ∧ ¬y ∧ z) ∨ (¬x ∧ y ∧ w) for
the player and (x∧y∧¬z)∨ (¬x∧y∧¬w) for the opponent.
The framework also contains an Ordering, Random, Choice
and Result gadget, which are described below.

Ordering Gadget. The Ordering gadget ensures that the
correct order of actions is followed by the player. All actions
must be repeatedly performed in the following order:

1. Player makes their move (player can also pass).

2. Player checks whether their Boolean formula is satisfied.

3. Player makes a random move for the opponent (passing
may occur as a random possibility).

4. Player checks whether the opponent’s Boolean formula
is satisfied.

Choice Gadget. The Choice gadget allows the player to
make a single choice about which of their assigned variables
will change in value during their move. The player should
also have the option to pass. When a bird enters the Choice
gadget via the Ordering gadget, the location at which it will
exit is based on this choice made by the player. Depending on
where the bird exits, the value of a single variable assigned to
the player will either be changed or kept the same (pass).
Random Gadget. The Random gadget makes a random
choice between multiple options, based on the stochasticity
of the game engine. When a bird enters the Random gadget
there are several possible locations where it can exit, each of
which has a probability of occurring that is greater than zero.
Depending on where the bird exits, the value of a single vari-
able assigned to the opponent will either be changed or kept
the same (pass).
Clause Gadget. Each Clause gadget represents a specific
clause from either the player’s or opponent’s Boolean for-
mula, and is “activated” if its associated clause is satisfied.
Result Gadget. The Result gadget is used to decide if the
player has won (i.e. level solved). If the player’s Boolean for-
mula is satisfied after they have made a move, then the player
can travel to the Result gadget from one of their activated
Clause gadgets, allowing them to “pass through” the Result
gadget and solve the level. If the opponent’s Boolean formula
is satisfied after a random move was made for them, then the
player will be forced to travel to the Result gadget from one
of the opponent’s activated Clause gadgets, which will then
block the Result gadget and make the level unsolvable.
Framework Design. The player fires a bird into the Order-
ing gadget to make the majority of actions, as well as into
the Choice gadget to dictate which of their assigned variables
will change in value for their next move. For our general
framework diagram (Figure 5), an arrow into the left side of
a Clause gadget indicates that the value of a variable is be-
ing changed, while an arrow into the right side indicates that
the Clause gadget is being checked for activation (i.e. check
if the associated clause is satisfied). The arrow into the left
side of the Result gadget signifies that the level is lost (un-
solvable), while the arrow into the right side signifies that the
level is won (solved). Lastly, the arrow into the left side of the
Choice gadget carries out the player’s chosen move, while the
arrow into the right side allows the player to specify the move
they wish to make next.

Any given setup of G2 can be expressed as an ABES level
in this form, and solving this level is equivalent to winning
that game of G2 (against a random opponent).

8 Conclusion
In this paper, we have proven that the task of deciding
whether a given Angry Birds level can be solved is either NP-
hard, PSPACE-hard, PSPACE-complete or EXPTIME-hard,
depending on the version of the game being used. Our use
of unknown and changing environmental variables as the op-
ponent which the player is facing, is a unique view of the
problem and opens up the possibility of proving many other
games EXPTIME-hard using this methodology.
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[Gualà et al., 2014] Luciano Gualà, Stefano Leucci, and
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