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Abstract

In this research project report, we propose different metrics to
find game distance estimation on a phenotype basis, i.e., focusing
on how a game is played. The metrics are developed as an ex-
tension to the Digital Ludeme Project in order to help with the
modeling, reconstruction, and mapping objectives for its games
database. One of the phenotype approaches utilizes the Tree Edit
Distance Metric, which compares games by calculating the dis-
tance between generated game trees of the two games. Various
techniques have been used to generate differentiating trees using
different aspects of the games. The second concept utilizes Play
Trace Distance Metric, which compares differently created play
outs.

In order to compare the phonetic structures, further processing
needs to be done. The proposed Labelling algorithms, applied in
both mentioned approaches, enable comparisons by storing essen-
tial game-related information inside the generated structures. We
show that the developed phenotype approaches are independently
able to calculate distances between games that match the prior
classification done by the Ludii General Game System Team. This
project shows that the concept of utilizing phonetic structures of
the games is a viable approach to compare games and that fu-
ture work with experts in the field needs to be done to refine the
methods.
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Abbreviations and terms

Abbreviations

GDL Game Description Language

TED Tree Edit Distance

PTS Play Traces Similarity

GGP General Game Playing

TF-IDF Term frequency–inverse document frequency

MCTS Monte Carlo Tree Search

UCT Upper Confidence Trees

PCA Principal Component Analysis

Terms

Unified move label A string representation of a move played in a game that is
unified over two different games so that they match.
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1 Introduction

1.1 Context and Motivation

Games have been part of the human being and his interaction for thousands of years.
They are part of our life, used for different purposes regardless of our culture or age.
On the other hand, there are several differences between them. Many games have
been evolving, "traveled between cultures", some become extinct, and new ones have
been created.

Important features or characteristics are the rules. Sometimes more complicated and
sometimes more straightforward, but with enough remarkable relevance to define a
game almost entirely. The issue is about the number of players, the board‘s shape,
objectives. Precisely, the rules imply differences, which in turn indicate that we can
differentiate the games, classify them and, in some way, compare them. If we are
given two games, we can determine how similar or dissimilar they are or analyze
them. However, we are talking about a considerable amount of data, so several
techniques have been developed in recent years for classification, clustering games
into meaningful categories.

It is here when we can better understand one of the main parts of the context of
our research, the Digital Ludeme Project, which investigates the development of
traditional strategy games with modern methods and that is being developed in
Maastricht, Netherlands. Following its purposes, our team wants to contribute to
this far-reaching program with the Games Distance Metrics Project. The objective
is to develop a capable tool in order to distinguish games on a behavioral basis. The
reason why this topic is being explored is, on the one hand, to run a check on newly
and automatically generated games to assess their originality. On the other hand, it
can be used as a method to prevent plagiarism.

Moreover, understanding the distance between two games makes it possible to cre-
ate and update clusters with more accurate and precise information, which can be
related to both the genotype and the phenotype.

Group 7 - Game Distance Metric 1



1 Introduction

1.2 The Digital Ludeme Project

The Digital Ludeme Project (Browne, 2019) is a five-year project ranging from
2018 to 2023 hosted by Maastricht University and funded by the European Re-
search Council (ERC) Consolidator Grant. “The key objective is to study Tradi-
tional Strategy Games, presented in the public domain that rely on mental acuity
and stem from different cultures and periods starting at 3500 B.C.” (Heinze et al.,
2020). The general aim of this project is to improve our understanding of traditional
strategy games, using modern Artificial Intelligence techniques, to chart their his-
torical development, and explore their role in the development of human culture and
the spread of mathematical ideas.1

Some of the project’s key objectives are :

• Model the full range of traditional strategy games in a single playable
database.

• Reconstruct missing knowledge about traditional games with an unprece-
dented degree of accuracy.

• Map the transmission of games and associated mathematical ideas across
history and culture.

1.3 Problem Statement

This research focuses exclusively on games studied as part of the Digital Ludeme
project. The Ludii General Game System 2defines a range of games in a custom
game description language based on the ludemes that make them up. These are
traditional strategy games, i.e., games in the public domain without an owner,
based on logical decision-making and were invented before 1875. (Browne et al.,
2019).

More formally, a game can be defined as:

Game : G = {Equipment, Rules, Mode}

Where the 3-tuples provide information on the form (genotype: rules and equipment)
and the functionality (phenotype: behavior during the play) of a specific game. Each

1The website of the project: http://ludii.games.
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1 Introduction

conceptual unit of game-related information that is used to specify a game is called
a ludeme.

This project aims to define measures or algorithms that quantify how similar two
games are (potentially, in terms of the underlying structure of rule sets and moves),
based on the form or functionality of the games, thus allowing us to estimate the
distance between games.

The problem statement then is the following:
Given a set of n games G = {g1, . . . , gn} in their ludemic description and three
games gi, gj, gk ∈ G, where i, j, k ∈ {1, . . . , n} ∧ i 6= j 6= k. Find a distance measure
dist(gi, gj) such that it is likely that if dist(gi, gj) > dist(gi, gk) then the behaviour
and structure of gi is closer to that of gk than gj. And test whether or not it is the
case.

1.4 Research Questions

The research questions are the following:

• Which aspects of games allow the functional distance between two games to
be reliably measured?

• Which of the existing technologies is best suited to achieve the project goal?

• How will we evaluate the reliability of the obtained results?

More approach-oriented research questions (based on labeled moves from play-
outs):

• Is it possible to generate unified move labels3 given a game?

• Which selection techniques are we going to use to generate a labeled game tree
out of a given game?

• Having labeled game trees, can a reliable distance metric between two games
be computed?

• Is it plausible to average the computed results that have been extracted from
different distance measurements?

3unified move labels: A string representation of a move played in a game that is unified over
two different games so that they match.
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1 Introduction

1.5 Structure of the paper

In this subsection, we briefly explain the structure of our paper by summarizing the
contents of the paper as well as introducing our major approaches for this research
project.

Firstly, we give a brief and general introduction of the topic so it can be under-
standable by those who read it as well as introducing our purpose and contribution
to the field. Secondly, with provide the reader with a general overview of the previ-
ous related work that has been done in the field. Moreover, we mention the social
impact of similarity measures between games and the cultural aspect that can be
distinguished by that similarities.

Afterwards, we describe our methodologies and approaches by defining our labeling
algorithm in more detail. Additionally, we present our distance metric approaches by
defining the differences in each of them. Furthermore, we state the obtained results
extracted from our approaches by using visualized graphs, and in the next section,
we discuss the inference of them by comparing all our methods.

Concluding, we are providing our ideas for methods and uninvestigated approaches
that can possibly be investigated and therefore implemented in future researches
related to this work.

Group 7 - Game Distance Metric 4



2 Previous and related work

In this section, the current existing technologies related to the main goal of the
project will be discussed in detail. We will primarily describe the general tools and
techniques that we will exploit to calculate a reliable and accurate distance between
two or more games written in the Ludii format. Secondly, the previous attempt to
generate phylogenetic similarities between games is presented to provide the reader
with a good overview of the whole topic.

2.1 Existing Engines

2.1.1 General Game Playing and Game Description Language

In 2005, the Stanford Logic Group came up with the Game Description Lan-
guage (GDL), used to develop games in a way that it enables the use of an agent
to perform efficiently in many arbitrary games, General Game Playing (GGP). The
basis for GDL is a conceptualization of games in terms of entities, actions, proposi-
tions, and players. In 2017 the Ludii platform (Stephenson et al., 2019), a complete
general game system, was launched. This new system improves the previous frame-
work of GDL by following a more class grammar approach based on ludemes, and
therefore simplifying the language. Every ludeme is correlated to a specific type of
information and characteristics of games such as equipment, rules, end-conditions,
etc. The pictures below illustrate the different descriptions of Tic-Tac-Toe between
these two frameworks:

Group 7 - Game Distance Metric 5
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2 Previous and related work

(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))
(true (control ?w)))
(<= (legal white noop) (true (control black)))
(<= (legal black noop) (true (control white)))
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
(true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))
(true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))
(distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))
(true (cell ?m ?n b)) (or (distinct ?m ?j)
(distinct ?n ?k)))
(<= (next (control white)) (true (control black)))
(<= (next (control black)) (true (control white)))
(<= (row ?m ?x) (true (cell ?m 1 ?x))
(true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))
(true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))
(true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))
(true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(<= open (true (cell ?m ?n b))) (<= (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))
(<= (goal white 0) open (not (line x)))
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))
(<= (goal black 0) open (not (line o)))
(<= terminal (line x))
(<= terminal (line o))
(<= terminal (not open))

Figure 2.1: Tic-Tac-Toe description in GDL. (Browne, 2020).

(game "Tic-Tac-Toe"   
    (players 2)   
    (equipment {  
        (board (square 3))  
        (piece "Disc" P1)  
        (piece "Cross" P2)  
    })   
    (rules  
        (play (move  
                  Add (to (sites Empty)) 
              ) 
        ) 
        (end  
            (if  
               (is Line 3)  
               (result Mover Win) 
            ) 
        ) 
    ) 
)

(a) Description in Ludii

game

Tic-Tac-Toe

players

White
Black

board

end

tiling

square

i-nbors

shape

square

size

3 3

All

win

in-a-row

3

(b) Tree description in Ludii

Figure 2.2: Representation of the Tic-Tac-Toe description in Ludii as a tree (Browne,
2020).
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2 Previous and related work

2.2 Major Approaches

2.2.1 Genotype

In terms of biology, a genotype is defined as the collection of traits of the individual
that is inherited from the parents. For instance, DNA sequences can be considered
as genotype. However, in terms of this research project and the Ludi Platform,
genotype will refer to the ludemes that are used to describe games. Ludemes basically
correspond to the encoding of the rules and the characteristics of games(Heinze et
al., 2020). One example of genotype in the Ludi Platform will be to construct labeled
trees based on the rules of the games and compare those written rules with the use
of Levenshtein distance.

2.2.2 Phenotype

On the other hand, phenotype is a genetical term that is being used for composite
observable characteristics or traits of an organism. In this research topic, the pheno-
type corresponds to the actual behaviour of a game when being played, dictated by
the rules of it(Heinze et al., 2020). To distinguish between different games, several
quality measures are being used, such as the average game length or the sequence
of player’s strategic decisions from a sample of playouts.

2.3 Methodologies

2.3.1 Tree Edit Distance Metrics

A lot of work has been done by previous research, especially on the computation
of the distance between labeled trees, which will be on aspect that this project will
focus on. Bille, 2005 researched the topic widely with specific emphasis on the tree
edit distance method.

2.3.2 Play Traces Distance Metric

Another similar approach that has already been exploited is the comparison between
play traces of games to distinguish dissimilarities between them. The significant
difference in this method lies in the type of content highlighted. In particular, this

Group 7 - Game Distance Metric 7



2 Previous and related work

technique of comparing two games focuses on the semantic contents so that the rating
calculated is more representative of how humans perceive the feature’s differences (J.
Osborn et al., 2014). Gamalyzer is an example of a tool that is capable of computing
such a metric. However, it focuses only on goal-oriented games by comparing input
files that encode to play traces. The tool, concerning the calculation of distance
metric, is available on GitHub1.

2.4 Previous attempts

To the best of our knowledge, the only existing attempt is the one made by the
previous year’s group. (Heinze et al., 2020) The approach used in that project focused
mainly on the phylogenetic aspects of the trees trying to reconstruct the evolutionary
history of the games included in Ludii, especially the ones belonging to the Mancala
family. In that case, a simple Bag of Words approach is based on keywords included
in the Ludii games description.

Initial processing of the .lud files was necessary to remove all the unnecessary
information. Following that, a basic frequency distribution of the keywords over
the files was done without considering the relationship or the order between the
words.

An additional approach was used from the previous year’s group by trying to im-
plement the Graph Similarity algorithm. The group tried to extract the board by
using an algorithm for receiving an input for Graph Similarity Algorithm. Unfor-
tunately, even though this method was quite practical on mancala family games
since, for every variation of them, the board is quite similar, the results proved
that this technique is an NP-Hard problem and therefore not feasible for comput-
ing accurate distances(in dissimilar boards) for trees that contain more than 12
nodes.

A more sophisticated approach then was used, the Term frequency–inverse document
frequency (TF-IDF) which also a genotype approach and basically improves the
previous framework "bag of words" by reflecting how important some words that
are encountered inside a game are. For this development, what the previous year’s
group did was to distribute weights to the words that were encountered less time
during the files analysis.

It is, therefore, necessary to point out the differences between our project and the
previous one. Our main target is the development of a tool capable of distinguishing

1GitHub repository: https://github.com/JoeOsborn/gamalyzer

Group 7 - Game Distance Metric 8
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2 Previous and related work

games based mainly on their behaviour (Phenotype approach). This way, the result
obtained not only will serve as a tool to cluster games into meaningful categories but
also has the potential to help the creation of new and different games by checking the
distance from the existing ones. Instead, from a technical perspective, the previous
year’s students tried to produce a phylogenetic classification of games (Genotype
approach).

2.5 Previous Literature

Even though all these years the primary goal of building an evolutionary tree of
ancient games has been explored with the use of advanced computational methods,
it still remains a relatively unexplored topic.

As far as we know, not much work has been done in classifying the difference
of phenotype between different board games. For instance, Genre discovery en-
gines and methods of assigning video games to existing genres have been devel-
oped, but expect the game properties to be already assigned. Furthermore, several
arbitrary board games that do not contain the factor of chance, luck, the qual-
ity measures of depth, clarity, and drama, etc. have been suggested(Heinze et al.,
2020).

However, the lack of analytical tools to viable distinguish board games phenotype
has been criticized over the years. For that reason, in this research project, our
major contribution will be concerning mostly the phenotype approach by focusing
on identifying reliable distance metrics from several methods that will encompass
a set of elements regarding the behavior and the characteristics of the games when
being played.

2.6 Social Impact

To discover the origin of a game, three main sources are of use: Literary sources,
archaeological findings, and the game itself.

By focusing on the game aspects and trying to identify cultural similarities or differ-
ences in how the games are built and played together with an accurate and reliable
distance metric can be used to create a family tree of clustered games (Heinze et al.,
2020).

In terms of phenotype and characteristics of the games, one element that can be
distinguished would be the way of thinking from each nation since the way the

Group 7 - Game Distance Metric 9



2 Previous and related work

game is played can be considered as a possible factor that reflects the mindset of
different nations and people.

Another possible beneficial extraction of that would be to identify key aspects of
several games and possibly combine them to create new complex games, which will
inherit several different characteristics and points of view.

This will be a huge contribution to the evolution of the games and society in general
since it will allow people to know and understand multiple cultural aspects just by
playing these complex games.

Finally, this will also help understand the evolution of human history and the illus-
tration of the common cultural heritage of humanity, especially in cases where there
are light records.(Heinze et al., 2020)

Group 7 - Game Distance Metric 10



3 Concepts, Approach and
Methodology

When comparing games, there are two major ways to approach this problem. The
first being the genotype approach, which focuses the distance metric on the items
that describe the game on a direct level. One example of a genotype approach would
be to compare the written rules with the Levenshtein distance. In the perspective
of Ludii defined games, which describe the games in a tree structure (Stephenson
et al., 2019) resulted in using the Tree Edit Distance (TED) in order to calculate a
distance metric. Another genotype approach is the comparison of the game boards.
As the game boards in Ludii are defined as a graph, one can use graph edit distance
Stephenson et al., 2019 to compare the two boards.

The second major approach is the phenotype approach. Which, in contrast, focuses
on the way the game is played. The way the game is played can be captured in play
traces. A play trace of a game is considered to be a list of the moves made in one
play out. A game tree can be regarded as the combination of multiple play traces.
For example, the root of the tree can be the beginning of the game, and each possible
move from the respective position is taken as the leaves.

Within the project, we are focusing our attention on the phenotype approach.
We investigate different methods to generate different play traces and game
trees.

Game 1 
& 

Game 2

 

Labeling Algorithm
Selected Distance
Metrics
Hyper Parameter

Options

Generate 
Phonetic 
Structure

Generate 
Phonetic 
Structure

Process 
Structure

     Executor
Combine  

into  
Score

Figure 3.1: General structure for computing distance metrics between two games.
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3 Concepts, Approach and Methodology

As visualized in Figure 3.1, the input to our algorithm contains the two games to
compare and a distance option object containing the used distance metrics, hyper
parameter, and which labeling algorithm should be used. The option object can
be constructed with a builder pattern, which allows for easy customization for each
distance metric. For each selected distance metric, the phonetic structures need to be
generated, then prepossessed and followingly compared. As this is a lengthy process
this part is parallelized for each selected distance metric with a work sharing thread
pool. After each calculation is done the score of each successful metric is combined
into on score.

The distance metric calculated is a value between 0 and 1, where 0 means no sim-
ilarity and 1 means similar. Therefore for some of the distance metric we have to
computed 1−result where the result has to be between 0 and 1.

3.1 Labelling Algorithm

In this section the main concepts related to the labeling algorithm are going to be
discussed in order to make clear specific steps found in the upcoming sections about
TED Metric and Play Traces Similarity (PTS) Metric.

3.1.1 Concepts

Labeling represents a key concept for developing methods that can efficiently and
accurately describe similarities or differences between games. The reason that leads
to the formulation of the previous sentence is fairly simple: algorithms used in the
TED or PTS compute metrics by comparing information stored inside the predefined
data structure. This means that such information must capture the essence of the
games.

First of all, it is then necessary to find what data seems to represent the game
in a meaningful way. While doing so, a particular constraint must be taken into
account: the goal is to calculate distances with attention to the phenotype. To do
that we identified such data in the Moves that are played, which bring the game from
one state to another, highlighting how the rules (genotype) can be used/applied to
influence the game playing (phenotype).

Different approaches were tried throughout the development of this project, although
all of them were based on the concepts of Moves and Actions. Both derive directly
from objects found inside the Ludii project: the first conceptually contains many
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3 Concepts, Approach and Methodology

instances of the second, meaning that the Actions are atoms that can be combined
to make up a single Move.

3.1.2 Approaches

In this section, all the approaches will be explained and discussed to give a good
overview and make the following sections more easily understandable. The descrip-
tion will be structured as follows: first, the label generation process will be explained,
then the strengths and weaknesses of both generation and resulting labels will be
discussed. Moreover, the approaches will be presented chronologically, starting with
a simple idea and refining it into more sophisticated methods.

In the section dedicated to the results the actual robustness and accuracy of every
method will be analyzed.

3.1.2.1 First Approach

•Generation:
This first approach could be considered the naive one. It relies on a straightforward
method that is commonly used in Java: toString. In fact, the process obtains from
the simulated game the last move played, and from it the constituent actions. Those
actions are store inside a list, which is turned into a String by calling the previously
specified method. Hashing is performed on this last object to obtain an Integer,
which serves as a key to access a HashMap where all the previously obtained labels
are stored. Finally, the label is returned by either getting it from the dictionary,
if already present, or creating it by saving the size of HashMap as a value of type
String.

Figure 3.2 visually explains this process.

Move
"Move
from: 2
to: 64"

HashCode MoveLabel

Figure 3.2: Label Generation Method 1

•Strength & Weaknesses:
This method is not to be considered a lousy approach because of its simplicity.
It can provide reasonable results when applied to the Tree Edit Distance Metric,
as we will see in the tests section. There are although some problems associated
with it. The data used to generate the labels is exceptionally detailed for many
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3 Concepts, Approach and Methodology

games where pieces are moved. This results in specific information related to the
cells from which the piece is moved to be the main discriminant that makes labels
different.

In this instance, the issue is the absence of common labels even inside the same
game play out and thus high distance even when comparing a game to itself. Overall,
though extremely low (in terms of similarity between games), the values obtained
seem to capture structural differences in the generated trees.

3.1.2.2 Second Approach

•Generation:
The first approach has the defect of producing a very high number of labels due to
the level of detail provided by the data used to generate the labels. For this second
approach, the goal is mainly to reduce that number by generalizing over the possible
moves played during a game.

In this case, instead of turning a move into a String object, we proceed by recursively
obtain every action that makes up the move. All the actions are then turned into a
String object that uniquely identifies them. Following that, the same approach used
for the first method is applied. All the Strings are hashed and then finally XORed
together to obtain a single value. This final value is used to access the HashMap
and returning the correct label.

Figure 3.3 describes with a scheme the process explained above.

"Remove" HashCode_1

"Move" HashCode_N

Action_1

Action_N

Move MoveLabel

Figure 3.3: Label Generation Method 2

•Strength & Weaknesses:
This method improves a lot on the previous one. The number of labels gener-
ated is lower than the previous approach has: from approximately 600, it drops
to 5 for the game of Chess. Moreover, as previously explained, such labels are
more general, which means that only essential information is kept to distinguish
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them producing more meaningful results that work well with both TED and
PTS.

The main problem that mine this approach is opposite to the one presented in
the first approach: generalization. In this case, specific information about the
type of movement made by pieces is left out, leading to difficulties in distin-
guishing games with moving pieces since all the motion moves are considered the
same.

3.1.2.3 Third Approach

•Generation:
This third approach tries to come up with a solution for the excessive generality of
the previous method. To do so, it relies on what we defined as Walks, meaning the
sequence of steps taken by a piece when it is moved.

For instance, the walk of a piece moving diagonally on a squared board will be
described as follows: {F, R, ..., F, R}. In this example the letters F and R correspond
respectively to Forward and Right. Since this method is developed starting from the
previous one, part of the process remains the same. In fact, every single step is equal,
except a new one is added. After XORing together all the hashed derived from the
actions name, a similar process is applied for the walk with a little twist. If a piece
has been moved, the walk is calculated and then turned into a sequence of Strings,
each of them representing a step. This is then checked against all the values already
stored in a dedicated HashMap and then used to obtain an existing hash value or
create a new one. Once this is done, the value is XORed together with the label
previously obtained to create a more specific one.

In Figure 3.4 the entire process is visually described.

•Strength & Weaknesses:
This attempt, as we will discuss in the results chapter, did not seem to produce a
more accurate result. It presents, in fact, two main flaws.

The first one is a lack of generalization over the type of moves played. It does not
currently exist in Ludii, nor is it easy to implement a method capable of generalizing
from Walks. This makes our method too specific to be able to accurately capture
the similarity between pieces slides.

The second flaw groups together these first three approaches. The label produced is
described as a single value. Having such a simple data structure make further mean-
ingful similarity comparisons impossible. Despite these two defects, it still improves
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"Move" HashCode_1

"Pass" HashCode_N

Action_1

Action_N

Walk ["F", "F", "L"] HashCode_W

"Pass"Action_N HashCode_N

Move MoveLabel

Figure 3.4: Label Generation Method 3

the results obtained with the first approach, and we believe that it would provide
more accurate results with the right movement generalization.

3.1.2.4 Fourth Approach

•Generation:
In this last approach, the goal is to overcome the issue presented by the generation
of labels in a single value format. To do that, we edited the second method explained
in Section 3.1.2.2.

From the Move object, all the actions are obtained and again turned into their
String representation. Instead of being hashed and XORed together, these values
are simply collected in a list that is return as a label. This highly simplifies the
whole process.

Figure 3.5 shows this generation process.

"Remove"

"Move"

Action_1

Action_N

MoveLabel

Move
["Remove",

...,
"Move"]

Figure 3.5: Label Generation Method 4
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•Strength & Weaknesses:
Later on, the results obtained with this last method will be discussed more thor-
oughly. For now, it will only be mentioned that the value obtained leads to believe
that out of the four implemented methods, this is the one providing the best per-
formance. This algorithm’s main strength is producing multi-value labels that can
be used to compute fractional similarity, especially when used together with Play
Traces. This calculation allows capturing similarity in cases where two moves have
one or more common actions.

While being a promising approach, it suffers the same problems described for the
second method. It uses very general information to generate labels leading to many
duplicate labels to be produced and making it challenging to capture differences
between games that present similar play out but different types of movements of the
piece.

3.1.3 Label Comparison

Finally, in this section, the comparison between labels is introduced to make the
understanding of later concepts easier. More importantly, it explains what is referred
to as Fractional Similarity in the previous paragraphs. This concept is especially
useful in combination with the PTS approach and, even though not yet implemented,
it lends itself to the development of custom cost functions that can be used in
TED. The similarity measure used is the Jaccard’s Similarity, which simply consists
of the ratio between the intersection over the union of two given sets A and B:

J(A, B) = |A ∩B|
|A ∪B|

(3.1)

Since the data structure on which this algorithm applies is a List of Strings, the list
has to be turned into a set, which leads to obtaining the ratio of common actions over
all the actions in both labels. There are, although some exceptional cases where this
is not enough. In fact, some games present moves where the same action is performed
more than once. The basic similarity then has been updated to handle these cases
by renaming repeated labels and thus preserving them when casting the list to a
set.
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3.2 Tree Edit Distance Metric

Trees are among the most common and well-studied combinatorial structures in
computer science (Bille, 2005). In order to compare trees, the TED is utilized as a
distance metric between labeled trees. The algorithm compares two trees by com-
puting the minimal amount of actions required to transform the first tree into the
second. In particular, those actions are the deletion of a node, the insertion of a node
as a leaf or between two nodes, and the renaming of a node.

root

1 3

1 2

3

2

root

1 3

1 2 21

1

root

2 2

1 2

root

1 3

1 2 1 2

root

1 2

1 2

Rename: 1 - 2 Insert: 3 Insert: 1

Figure 3.6: Visualization of the Tree Edit Distance

Figure 3.6 describes exemplary the actions required to calculate the tree edit dis-
tance. The distance in this instance is three as it requires one rename and two insert
actions.

Therefore comparing games by comparing generated game trees utilizing the tree
edit distance is one of the phenotype approaches we are investigating. A game tree
in the sense of game theory is a directed graph whose edges are moves of the game
and whose nodes are the resulting positions.

The tree edit distance in itself is not a good indicator for the distance between two
games as the number of required actions usually rises proportionally with the size
of the trees. Consequently, the distance between bigger games would be higher than
between smaller games. In order to get a comparable value, a normalization of the
tree edit distance is used.

NTED(T1, T2) = TED(T1, T2)
max (|T1| , |T2|)

(3.2)
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With T1 and T2 being two trees, and |T | being the amount of nodes in the tree,
equation 3.2 is a commonly accepted approach for normalization (Li & Chenguang,
2011).

The larger the editing distance of the tree, the more dissimilar the trees
are.

3.2.1 Generation of Trees

As we try to capture the way the game is played in different structures, we also look
into different approaches on how to capture differentiating aspects of the game in the
game trees. Four different techniques are to generate different trees were developed.
They can be grouped to either take into account the location of the state of the
game or if an AI was used in the generation process.

First, we look at the more straightforward generation methods in which the tree’s
location in the full game tree is taken into account.

Secondly, an AI is involved to prune parts of the tree that seem like a bad option.
We use the game Tic-Tac-Toe to show the different ways to capture aspects of the
game, as it is a small game.

3.2.1.1 Full Game Tree and End Game Tree

One aspect of a game regarding the location of the tree is how it is played in the
beginning. This can be captured by the full game tree, where the root node is the
beginning of the game.

Figure 3.7 displays Tic-Tac-Toe’s full game tree where representatively for the second
turn only on the move is continued. The first row contains every possible move. The
opening player can play. As two players play tic-Tac-Toe, the second row is the
opponent player’s turn. Contrary to the game tree in Figure 3.7 the full game tree
would have the displayed second row for every move in the first row regarding the
first move played.

Like the full game tree, the end game tree tries to capture away the game is played
at a specific position. Contrary it is not the beginning but, as the name implies, the
end of the game. The end game tree requires, as the name suggests, the end of the
game. Therefore, we generate a random play out and store the last n nodes. The
required amount of nodes depends on the given tree depth provided as a hyperpa-
rameter.
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Figure 3.7: Full Game Tree example that is not actually a full game tree because
that wouldn’t fit

Depth 2
Figure 3.8: Play trace of Tic-Tac-Toe with the selection of the root node of the game

end tree.

Figure 3.8 visualizes a play out of Tic-Tac-Toe. The example depth of the tree is
two. Therefore, only the last two game states need to be stored in order to go
backward. When we have selected the root node by going n nodes back, the process
of generating the end game tree is the same as generating the full game tree. Usually,
in the end, the options for moves are limited, and consequently, the shape of the
tree isn’t as uniform as at the beginning of the game.

As there are multiple possible ends to a game, multiple end game trees are
generated. Following, they are randomly matched to the end game trees of the
comparing game, and the respective tree edit distances are averaged over each
pair.
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3.2.1.2 Alpha-Beta Tree

In order to find the optimal move to make in a specific situation, the Minimax search
algorithm can be applied. The algorithm searches the game tree and designates each
terminal node either a positive value for a win, a negative value for a loss or a zero
in case of a draw out of the root node players perspective. The leaf node values are
propagated upwards by selecting either the highest or lowest value depending on
who is choosing in the respective node. The beginning player tries to maximize and
the opponent to minimize. The best move is selected by choosing the root node move
with the highest value. This algorithm is initially intended for two-player games but
can be generalized to work for multiple players.

“A technique called "alpha-beta pruning" is generally used to speed up such search
processes without the loss of information.” (Knuth & Moore, 1975). Figuratively
speaking, this speed-up is achieved by cutting off parts of the tree that do not yield
to the search for the optimal move.

0 1

-1

1

0

0

0

1 1

-1

Figure 3.9: Play trace of Tic Tac Toe with the selection of the root node of the game
end tree.

Source: Example taken from: https://materiaalit.github.io/intro-to-ai-17/part2/

An example of how the alpha-beta pruning technique is used is shown in figure 3.9.
From the cross player’s perspective, by following the first move and placing the cross
on the middle left, she can archive at best a draw under when the circle player plays
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optimally. When playing on the right side, the circle player can win in one move.
As the cross player knows that she can archive a draw by playing the first move,
there is no merit in investigating the branch where she loses further. Therefore the
remaining branches of that path can be pruned.

By utilizing that technique, differently shaped trees can be generated in which, for
the player, uninteresting parts are pruned off. Similar games might have the same
strategy and, therefore, similar shaped trees.

3.2.1.3 UCT Algorithm

A different approach can utilize artificial intelligence to find the best move is the
Monte Carlo Tree Search (MCTS) algorithm. “MCTS [...] is based on random-
ized explorations of the search space. Using the results of previous explorations,
the algorithm gradually grows a game tree [...], and successively becomes better
at accurately estimating the values of the most promising moves”(Chaslot et al.,
2008).

In order to grow the game tree, the algorithm utilizes four strategic phases that are
repeated as long as there is time left.

• Selection - The phase in which a new leaf node is selected randomly that is
not yet added to the tree.

• Expansion - Adding the selected leaf node to the tree.

• Simulation - Doing a role out / play out to find the win / loss ratio.

• Backpropagation - Propagating the result of the simulation upwards to the
root node updating the win / loss ration of each node.

For the task of comparing games, based on the generated tree, the win/loss ratio isn’t
necessarily required as this approach would not be much different from creating a
random game tree. Considering the win/loss ratio in the selection phase would result
in a more representing tree that holds more information about the game. The Upper
Confidence Trees (UCT) algorithm tries to balance the exploration and exploitation
in the selection by taking into account the win/loss ratio and the number of times
a specific node has been visited. The child node j that maximizes the formula given
in equation 3.3 is selected.

UCTj = Xj + C ·

√√√√ ln(n)
nj

(3.3)
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Where Xj is the win loss ratio of the child, n is the number of times the parent
has been visited, nj is the number of times the child has been visited and C is a
constant to adjust the amount of exploration.

3.2.2 Processing the trees

The Tree Edit Distance is an NP-hard problem. (Bille, 2005) Put another way, the
distance metric’s calculation time grows exponentially with the size of the trees.
Therefore, the distance metric becomes unfeasible for bigger game trees. Bigger
games with more possible moves result in bigger trees and generally need to be
constrained in their height.

Another approach to limit the size of the tree is by limiting the branching factor
of the tree. Matching the trees in minimal branch or max width per layer was one
approach to speed up the calculation of the distance metric without losing too much
information. Minimal branch means that firstly we sample branches of the tree to
get the minimum width of both trees, and the max width parameter is a given
hyperparameter.

root
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22 1

root

1 3

22 1 1 2

min - width
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(a) Finding the minimal width per height of a
tree

root

2

root

2
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2

2

12

2 2 1 1 21

1 3

(b) Selecting different nodes.

Figure 3.10: Representation of the Tic-Tac-Toe description in Ludii as a tree
(Browne, 2020).

Exemplary in Figure 3.10 (a) the min branching width is two for each layer. After
the minimal branching factor is found, the selection of the different labels per layer is
done. Only less than the determined min width of that layer can be chosen, or if that
value is bigger, then less than the given max width parameter.

A drawback of this approach is that in bigger trees, the tree’s unique shape is
lost, and the width of the tree becomes uniform. If not time but accuracy is of the
essence with the given hyperparameter object, the ability to turn off the pruning is
given to the user of the distance metric calculation. Further more depending on the
expressiveness of the used labeling algorithm, pruning down the trees could remove

Group 7 - Game Distance Metric 23



3 Concepts, Approach and Methodology

the differentiating features of the trees. If the labeling algorithm designates the game
state the same labels then the trees become the same and the resulting score would
be 1.

The tree edit distance is order dependent. Consequently, if the children of a node
are not in the same order as in the comparing tree, the distance metric results in a
higher value. For comparing games, there is no apparent order in the possible moves
of a state. Accordingly, the higher distance value is not correct as the distance metric
should be order independent in this case.

root root

21

1 2 1 2

1 3

21

Figure 3.11: Sorting the labels.

The simple solution to this problem is the ordering of the children by the given label.
Figure 3.11 shows that process.

3.3 Play Trace Distance Metric

Based on the behavior during the play, which we can get through simulation (Phe-
notype approach), a Play Trace similarity method was developed. Two games play-
outs are compared, and output that describing the play trace difference is returned.
There already exist other metrics defined for play traces similarity measures, but
with their properties relying on the cost of changing one play trace into another
(J. Osborn et al., 2014) or simply based on the visualization of play traces (J. C.
Osborn et al., 2018). These approaches have some limitations of size and vari-
ety of games that we want to avoid after our first Tree Edit Distance metric ap-
proach.
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3.3.1 Concepts

3.3.1.1 Play Trace

A gameplay trace consists of a sequence of moves played in that game, that is, a num-
ber of actions that occur in a particular order. This basic definition is needed to un-
derstand our goal of finding patterns between different play traces games. Having two
play traces, we can find similarities in sequences of moves. As the Label algorithm is
used, a gameplay trace has the following form in Figure 3.12.

...Label_1 Label_N

PlayTrace_1

Label_2

Figure 3.12: Generic form of a Play Trace

3.3.1.2 N-gram Algorithm

Nowadays, n-gram models have been shown to be very effective in the modeling
language. However, n-grams can also be used for sequences of practically any type
of data. In our case, an N-gram based model is used in order to be able to inspect
similarity by comparing ‘n’ moves-chunks each by each. A full play trace can be
split in smaller grams, even in grams of size one, which for example, are interesting
when comparing individual moves. More formally, we define the n-gram play traces
as follows in Figure 3.13.

...Label_1 Label_2 Label_N

PlayTrace : 

...Label_1 Label_2 Label_N-1 Label_N

Gram

1-Gram List: 
GramGramGram

...Label_1 Label_2 Label_N-1 Label_N

2-Gram List: 
Gram Gram

Figure 3.13: Generic form of a 1-Gram and a 2-Gram lists
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3.3.2 Approach and Methodology

3.3.2.1 Play Trace Generator

The play traces for a game are generated specifying how many number of different
play traces are needed. The reason behind this is that the more play traces, the
more moves and actions are analyzed. In section 4.1, the more in-depth explanation
is given.

We take into account two ways of generating the play traces, the Random generation
and the AI generation.We assume at this point that the first one allows us to explore
actions that the AI rarely would choose. As the proper name says, the play traces
are composed of random moves. On the other hand, AI generation has to be taken
into account because the moves also describe a game that a human would possibly
do.

The two methods differ in how the next move that is going to be stored in the play
trace list is selected. In the first one, the move is selected randomly. In the second
approach, an AI agent is used as it follows the game working context for selecting
the next move.

3.3.2.2 Play Trace Comparison

Once we know how the labeling algorithm is applied and how play traces are gen-
erated, we compare two play traces by comparing two lists of lists of game la-
bels.

...Label_1 Label_N

...

PlayTrace_1

PlayTrace_2

Label_2

Label_1 Label_2 Label_N

Figure 3.14: Visualization of Play Traces comparison

These two lists of lists and the maximum number of n-grams we want to consider are
the first elements taken into account for the final similarity result. Every individual
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number of n-gram, together with both lists of lists, is analyzed, creating the n-grams
lists from the game labels for every play trace (i.e., list of play traces). The results for
every n-gram, as it depends on both n-grams sizes, are normalized by dividing over
the multiplication of both n-grams sizes. The total result of these steps is averaged
over the number of n-grams comparisons done.

The inspection on the lists of n-grams is done by analyzing each n-gram, which is
a list of game labels, and each game label can be compared using the approach
explained in Section 3.1.3 and showed in Figure 3.15. Since we can have a different
number of actions per game label, the result of this comparison also reflects this size
difference. This is possible as the fourth labeling approach is used, so a fractional
result is outputted.

Intersection Size

"Promote"

"Move"

2

5

.."Pass"
"Add""Remove"

Game 1 Game 2

Union Size

Label
Similarity

0.4

5

2

Figure 3.15: Visualization of Labels comparison
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4.1 Number of play traces

To determine the optimal number of play traces, we pick two games, e.g., Half Chess
and Mini Shogi, and run several repeats of game comparisons with a different number
of play traces. After we have collected the data, we compute the average difference
between the same number of play traces to see how many we should use to find the
most robust number of play traces.
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Figure 4.1: Comparison of the average difference value of similarity for each number
of play traces.

As with most hyperparameters, the amount of to be used play traces is game
dependent. Also, it corresponds with the amount of time the AI has to select a
move. The assumption is that when utilizing the AI, the results obtained using
the play trace method would be more robust. The results of the experiments are
shown in Figure 4.1. With bigger games, it seems the convergence is slower, and
the use of more play traces is reasonable. With Half Chess and Mini Shogi, there
is no big difference between the AiVsRandom and only Random method can be
seen.
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Figure 4.2: Comparison of the average difference value of similarity for each number
of play traces.

The results of the smaller game experiment are shown in Figure 4.2. In smaller
games, the amount of needed play traces actually converges to an amount where
they have a negligible difference.

4.2 Labels comparison

The results of comparing algorithms on the example of comparing two different
games are shown in Figure 4.3a. As one can see, the ActionWalkLabeling algorithm
(third gray graph) shows low reliability compared to other algorithms that are more
robust. It can be seen that the MoveStringLabeling algorithm (first blue graph) is
inefficient for PlayTraces since no matter what games are compared, the result is
always close to 0. Comparing the PlainActionLabeling and the ActionXORLabeling
(fourth yellow and second orange graphs, respectively) algorithms, the PlainAction-
Labeling algorithm performs better. It captures more game similarities due to the
fractional similarity between labels.

The results of comparing algorithms on the example of comparing two similar games
are shown in Figure 4.3b. It should be noted that the same playing distance is
affected by the fact that the play-outs are random. That makes the method less
accurate but faster and captures the game’s sequence, that is, how similar matches
of the same game are.

Group 7 - Game Distance Metric 29



4 Results

(a) Labeling algorithms comparison on different
games.

(b) Labeling algorithms comparison on the same
games.

Figure 4.3: Labeling algorithms comparison.

4.3 Game Comparison

As the calculation of the game distance takes time, we reduced our selection of
games to shorter ones with the assumption that they also have a smaller branching
factor. In order to filter the games, we go through every single game and generate
ten play traces. Following, we averaged the play traces’ length and selected the one
with less than 25 moves. The list of games we computed the avg of can be seen in
appendix A.

Figure 4.4 shows a comparison of the obtained average results of the metrics of
games from the same folder and games from different folders. It can be noticed that
for each metric, the average result is always higher for games from the same folder,
which shows the correctness of the metrics and their ability to distinguish between
games from the same folder (which means that the games are similar) and games
from different folders.

Figure 4.6 shows the robustness of each metric. Each pair of Game X and Game
Y games is compared, and then a comparison of Game Y and Game X is made to
show how different results are. The difference between obtained values is calculated,
and all results are averaged over all pairs for each metric. One can notice that
endTreeDistance and uctTreeDistance algorithms show low robustness due to the
randomness in the creation process. On the contrary, random play traces are more
robust because the play trace generation process is computationally effective, and we
generate a huge number of play traces. Hence, this method shows better robustness.
Another interesting fact that was discovered was that AI random play traces have
low robustness, which was unintuitive. It seems the used UCT Algorithm to generate
the AI play traces is not the best choice and needs to be investigated further. Also,
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Figure 4.4: Comparison of average scores of algorithms of games in the same folder
and games from different folders.
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Figure 4.5: Comparison of scores of games in the same folder and games from dif-
ferent folders.

in future work, one can extend the AI play trace generator to create not only one
play trace.

Figure 4.7 and Figure 4.8 show the relative games comparison inside the Shogi folder
and the Territory folder, respectively. A comparison of each game inside the folder
with each other is performed. Each game has n variables (n is the number of games
inside the folder), where each value represents the relative similarity measure with
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Figure 4.6: Comparison of the robustness of algorithms.

the corresponding game. Having this data, we apply the PCA technique in order
to be able to visualize it and see how each game is relatively placed with respect
to other games from the same folder. It was found that two principal components
have 90- 95% variance in total (i.e., two principal components explain 90-95% of the
data). One can see on Figure 4.7 that Dice shogi is quite distant from the cluster
of other games. It should be said that this is just relative distance (because, for
instance, the average score for Dice shogi is 0.5, whereas, for other games in this
folder, it is around 0.8) that gives us an intuition of how games are placed with
respect to each other. On Figure 4.8 showing how the games are located in the
Territory folder, we can see that two main clusters appear.
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Figure 4.7: Shogi folder games comparison.
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Figure 4.8: Territory folder games comparison.
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5 Conclusions

We have shown how to utilize different phenotype approaches in order to get an
estimate on how similar games are.

Utilizing existing distance metrics on the phonetic structures generated be-
tween two games proved to be a viable method to calculate a distance met-
ric.

Further, through the different labeling algorithms, we investigated the various as-
pects of games that allow the functional distance between two games to be reliably
measured.

The reliability of our distance metric has been shown to be heavily dependent on the
used hyperparameters for the distance metrics. As our calculated distance metrics of
the selected games have shown that the results match with the prior made classifica-
tion by the ludii team, a certain assurance to the reliability has been made. Further,
prove can only be made with the help of experts in the field.

5.1 Future Work

We created the groundwork for using the phenotype structures to compare games.
With the limited knowledge about games and the Ludii project, interpreting the
resulting distance metrics is sometimes difficult. Therefore to get a deeper under-
standing of our algorithm’s work (potential shortcomings and identification of weak-
nesses), it is necessary to analyze our data with an expert.

5.1.1 Hyperparameter tuning

We found that most of the distance metrics used are heavily dependent on the
parameters used for them. Further, the hyperparameters are dependent on which
game is tested. For example, the calculation of the TED of bigger games is not
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5 Conclusions

feasible, and therefore, either tree pruning or only play trace similarity needs to be
used.

For some types of games, it may be useful to require a dynamic change of labeling
algorithm based on the games that are to be compared. There is, in fact, the chance
that a certain type of labeling might not be the best solution for all the possible
comparisons and that different types of games may require different labeling ap-
proaches. This represents a hard challenge and requires the collaboration of experts
to individuate all the essential characteristics and types of game. A major drawback
of a similar approach would be the need for constant updates every time a new
game is added to the Ludii library and would not lend itself well to a generalized
metric such as the one that has been researched for in this project. Nevertheless,
it represents a valid and possible approach. Additional experiments are needed to
explore different combinations of labeling algorithms with a large number of game
types.

Future work includes the investigation into a mechanism that tunes the hyperpa-
rameters automatically depending on the comparing game. Further is the dynamic
weighting of the individual distance metrics depending on the compared games to
be investigated.

5.1.2 Association rules

Investigating further different approaches to analyze the play traces is also part of
future work to make the distance metric more stable.

“A methodology known as association analysis [can be used] [...] for discovering
interesting relationships hidden in a large data set. The uncovered relationships can
be represented in the form of association rules or sets of frequent items.” (Tan et al.,
2005) It allows finding and determining the item sets of moves in games, which in
turn can allow comparing the similarity of games by matching similar item sets of
moves.

It could be the case that this approach may reveal different aspects of the games
than the comparison of n-grams and give a different view of the games’ similar-
ity.
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B Source Data for PCA

Dice Shogi Hasami Shogi Kyoto Shogi Minishogi Shogi Taikyoku Shogi Tobi Shogi

1.0000 0.5280 0.4469 0.4720 0.4702 0.4782 0.5348

0.5280 1.0000 0.8783 0.9172 0.9329 0.8634 0.9236

0.4469 0.8783 1.0000 0.7960 0.7618 0.7693 0.8166

0.4720 0.9172 0.7960 1.0000 0.8092 0.8213 0.8536

0.4702 0.9329 0.7618 0.8092 1.0000 0.8354 0.8536

0.4782 0.8634 0.7693 0.8213 0.8354 1.0000 0.8182

0.5348 0.9236 0.8166 0.8536 0.8536 0.8182 1.0000

Table B.1: Source matrix used for PCA and Shogi folder similarity plotting

Ataxx Dorvolz Go Lotus One-Eyed
Go

Patok Phantom
Go

Reversi Weiqi

1.0000 0.6056 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0001

0.6056 1.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0002

0.0000 0.0000 1.0000 0.9191 0.9540 0.9774 0.0004 0.7338 0.8867

0.0001 0.0001 0.9191 1.0000 0.9360 0.9570 0.0007 0.7207 0.8621

0.0000 0.0000 0.9540 0.9360 1.0000 0.9794 0.0004 0.7431 0.8957

0.0001 0.0001 0.9774 0.9570 0.9794 1.0000 0.0001 0.7578 0.9059

0.0000 0.0000 0.0004 0.0007 0.0004 0.0001 1.0000 0.0002 0.0013

0.0000 0.0000 0.7338 0.7207 0.7431 0.7578 0.0002 1.0000 0.6878

0.0001 0.0002 0.8867 0.8621 0.8957 0.9059 0.0013 0.6878 1.0000

Table B.2: Source matrix used for PCA and Territory folder similarity plotting
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