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Abstract

This master thesis explores a novel method for procedurally generating levels
for 2D Auto-runner games based on musical features. Designing 2D Platformer
levels is a costly and time consuming aspect of the game design process, espe-
cially when trying to create a level that feels synchronous to a piece of music. By
using procedural generation to unburden the game designers, more time could
be spend on other aspects of the game.

The method proposed in this thesis consists of a combination of music feature
extraction methods, generative grammars and evolutionary algorithms, to create
a level generator for the videogame The Impossible Game. The rules and level
structure of the game are linked to the set of musical features in order to allow
the music to influence certain aspects of the level. With this link established,
a geometry generation grammar is used to generate many possible candidate
levels. Each candidate level is rated by a set of level critics. This scoring system
is utilised in tandem with a genetic algorithm to evolve the levels towards a
more desirable state.

A survey is performed to obtain feedback about several aspects of the gener-
ated levels such as fun, song similarity and difficulty. These aspects were argued
to be of key importance in music based 2D Platformer levels. The results of
this survey indicated that overall the levels were too difficult for the users, as
the completion rate was very low. Furthermore, users rated the aspects related
to song similarity relatively high. This indicates a general satisfaction from
the participants towards the song matching of a level. Moreover, the proposed
emptiness critic resulted in the highest correlation to the user ratings. Show-
ing a particular liking towards that critic. Conversely, the proposed line critic
had the strongest negative correlation with user ratings. Meaning when the
level closely matches the pitch of a song, it becomes harder to satisfy the other
critics.
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Chapter 1

Introduction

The following chapter contains a brief introduction to the field of Procedural
Content Generation and the motivation behind using such a method. Secondly,
a brief overview of the role of music in games is given, followed by an introduction
to the problem domain. Furthermore a summary of the research is provided with
the problem statement and research questions included. Finally this chapter
concludes with an outline of the related work and an outline of the entire system
that will be discussed in this thesis.

1.1 Procedural Content Generation

Procedural Content Generation(PCG) refers to the algorithmic creation of game
content with limited of indirect user input[1]. This is in contrast with the
manual approach that is most commonly used in the video game industry. It
is important to examine the meaning of game content in this context, as it
will aid in understanding the boundaries of the definition of PCG. Shaker et
al. [2] observe that relevant game content includes: items, quests, levels, maps,
textures, music, vehicles and characters. Furthermore, there also exist some
important components which are not considered content such as Non Playable
Character Artificial Intelligence(NPC-AI) and the game engine. This distinction
is made due to the fact that within the field of Artificial Intelligence, there is
much more research done on applying AI methods to NPC behaviour than there
is on PCG. The tightening of this definition is mainly used to set PCG apart
from the more common methods where AI is used to play a game. However, it
must be noted that the field of PCG itself is based on various AI methods, thus
leaving the definition of what is and is not PCG slightly fuzzy.

The types of games PCG is applied to can come in several forms, video
games, board games, card games and puzzles are all examples of these. More
importantly than the type of game, PCG takes into account the possibilities,
constraints and design of each game in order to generate suitable content.

Now that the definition of game content has been given, it is important to
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consider the procedural generation part of PCG. In essence, procedural genera-
tion refers to the fact that an algorithm or method creates something. Meaning
a computer can run a PCG method, optionally with limited human involvement,
and output something. The next section will go into greater depth about the
benefits and drawbacks of the application of PCG in certain situations.

1.1.1 Motivation

Typically content in video games is human designed, since this often offers a
more detailed approach to designing a game. PCG attempts to alleviate the
need for a human designer to work on the design of a game. This approach
offers several benefits.

Firstly, using PCG to create aspects of a game can greatly reduce the time
needed to create such content. For example, if there is an open world game that
needs a large forest somewhere. A human designer would have to painstakingly
design the varieties of trees and place them in a natural pattern that mimics
a forest. A PCG method could generate both the varieties of trees as well as
their location in the forest, thus saving a lot of time. The time saved on these
tasks is also reflected in the cost of producing a game. There is potential to
save on hiring human designers, this makes it possible for smaller teams with
lower budgets to produce games of comparable size as larger teams that do not
use PCG.

Moreover, the use of PCG can greatly enlargen the scope of a game. Coming
back to the forest example, if a PCG method can generate a forest, it can do so
many times over thus yielding much larger worlds human designers alone could
never create. This becomes very apparent when looking at games like Minecraft1

and Binding of Isaac2, where the scope of the game is virtually infinite and non
repetitive.

Another benefit of using PCG is that certain content can be tailored to a
specific users needs. By combining player modelling and PCG, the user ex-
perience can be modified to fit the play style of the player. For example, the
difficulty of enemies can be determined by profiling the skill of the player. If
the player is a beginner the enemies will be easy, as they gain more skills, the
enemies will get progressively harder. Generating content in this manner can
lead to a more enjoyable experience for each distinct user as the learning curve
is tailored to the users abilities.

Finally, another benefit of using PCG is that such methods can mimic cre-
ative design. Algorithmic approaches can come up with radically different so-
lutions to problems compared to humans. It can provide a valid but surprising
new solution to a content generation problem, leading to possibly more interest-
ing game play. The next section will provide a brief overview of the role music
plays in video games.

1https://www.minecraft.net/
2https://bindingofisaac.com/
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1.2 Music in Video Games

Once an afterthought in terms of game design, nowadays music in video games
has developed into an industry of its own. It is not uncommon to find video
game soundtracks being released on audio platforms as a standalone album.
This shows the evolution in importance of music in games.

The first use of music in a video game dates all the way back 1972 with
the release of Pong. Machine storage was very limited in those days so full
songs could not be used at the time. However simple sound effects were used
to immerse the player more into the game, providing some auditory feedback to
what was happening on the screen. As processing power and memory increased
over the years, so did the length and quality of the music used in game. In the
8-bit and 16-bit era of games, music pieces could be played back with limited
quality. Leading to often repetitive sound schemes that are easily remembered
by the user. A famous example of this is the Super Mario Bros.1 game from
1985, the theme song of which has become a widely known tune. However music
at that time was more often used to enhance the game experience, instead of
influencing it.

In the modern era of games, sound and music design has become integral to
the overall experience in a game, to the point that nowadays it is not uncommon
to hear fully fleshed out music pieces with a lot of detail. The use of music has
also changed over time. Games have started to mould the user experience around
the music, leading to new types of games such as Dance Dance Revolution2

where the user has to move synchronous with the music. This opens up a whole
new area of game design where music can be used to determine the game play,
instead of the other way around.

1https://mario.nintendo.com/history/
2https://www.konami.com/games/asia/en/products/ddra/

7



1.3 Concepts

The game used to structure this thesis around is called The Impossible Game.
The game and its rules will be explained in Chapter 2, to limit the size of the
introduction. Instead a short introduction to the genre of game will be given
below, followed by a brief introduction to music feature extraction and a list of
useful terms.

1.3.1 2D Auto-runner Games

The genre of game used in this thesis is known as a 2D Auto-runner game. Auto-
runner games are a subset of “platform ’n’ run” games, racing games and skill
games which is characterised by the player automatically following along some
route while avoiding obstacles and possibly collecting items. Usually, the player
will not be able to return to a past location. Some examples of this type of
game include Jetpack Joyride 1, Temple Run 2 and Subway Surfer 3. This type
of game has gained popularity alongside the rise of the smartphone and tablet
computer where games with simple controls are favoured. This is reflected in
the number of downloads of the aforementioned games. For example, Subway
Surfer was the most downloaded mobile game of the 2010-2020 decade with over
1.5 billion downloads4.

1.3.2 Music Feature Extraction

Extracting features from a song requires the use of Music Information Retrieval
(MIR) methods in the time and frequency domain [3]. MIR is concerned with
the extraction and inference of meaningful features from music, indexing of mu-
sic using these features, and the development of different search and retrieval
schemes, as defined by Downie [4]. MIR methods are available to extract fea-
tures of many kinds, ranging from rhythm based features to harmonic or melodic
features. In this thesis low level features such as beats and notes will be ex-
tracted as well as high level features like the genre of a song. A deeper insight
into this field will be provided in Chapter 3.

1https://www.halfbrick.com/games/jetpack-joyride
2https://www.imangistudios.com/games.html
3https://subwaysurfers.com/
4https://www.businessinsider.com/most-downloaded-games-of-decade-subway-surfers-to-

fruit-ninja-2019-12?international=truer=USIR=T
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1.3.3 Useful Terms

There are some useful terms related to music and games that are important to
know when reading the rest of the thesis. A short list of them is provided below:

Music Terms

• Rhythm : The patterned, recurring alternations of contrasting elements of
sound.

• Pitch : The musical quality that allows for distinction between ”higher”
and ”lower” sounds

• Note : A sound of definite pitch

• Genre : A category of musical composition, marked by a distinctive style,
form or content.

• Timbre : Tone-colour of a sound. Allows for distinction between instru-
ments, even if they play the same notes.

Other Terms

• Level Geometry : The collection of all geometric shapes making up the
structure of a game level

• Feasible : Capable of being brought about

• Novel : Something new

• Fun : A source of enjoyment

1.4 Research Overview

The main components of this research consists of using previously established
PCG techniques to make a level generator that creates feasible levels for The
Impossible Game. The level generator will use several musical features to in-
fluence the generation process. The findings from building this level generator
will be reported on in Chapter 4. To guide the research process, a problem
statement and research questions were formulated.
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1.4.1 Problem Statement & Research Questions

From the problem domain and the aforementioned techniques the following
problem statement arises.

• How can musical features be mapped to a level generator for a 2D Auto-
runner game to produce a feasible, novel and fun level?

The following research questions have been formulated to address the problem
statement.

1. What set of musical features can feasibly be mapped to facets of a level?

2. What aspects of a 2D Auto-runner level can be influenced by these musical
features to provide an adequate level of difficulty, engagement and novelty?

3. How well do users feel the levels match the music used to generate them?

4. Can the resulting level generator be abstracted to a more general model
for music based 2D Platformers?

The first question will be answered after investigating the possible musical
features and deciding on the tangibility of each when integrating into a game.
The second question will be answered by reviewing the games rules and physics
constraints while considering which of the possible musical features can map to
each aspect of a level. The third question will be answered by conducting a user
survey to obtain feedback on the connection between the level and music. The
final question will be answered once the level generator is fully explained.

1.5 Related Work

In this section previously researched topics similar to this thesis are described.
Firstly, an approach to rhythm based level generation is shown. Afterwards, a
research topic containing music based PCG for games is discussed.

1.5.1 Rhythm-Based Level Generation for 2D Platformers

Existing methods for procedural level generation are mostly focused on terrain
generation and fitting together large, human designed chunks. While these
methods can lead to satisfactory results, they are prone to repetition and still
rely on the human designer for a large part. A novel rhythm-based method is
proposed by Smith et al. [5], where the rhythm refers to that which the player
feels with his hands while playing. The main novelty presented in this approach
is the explicit separation of rhythm and geometry. Whereas previous approaches
have opted for a pattern-building approach [6] in which the rhythm is implicitly
chosen based on the geometry. Comparatively, the novel method yields a larger
variety of possible levels and allows for a connection with music to exist as the
rhythm forms the basis of a level.
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1.5.2 Music-Based PCG for Games

PCG has been used as a tool for content creation in video games since the 1980’s.
It allows simpler creation of levels and other game content while creating more
variety for the players of a game. Generally PCG methods are used with an
interface where the creation parameters for a level need to be chosen by a human.
In “Music-Based Procedural Content Generation for Games” [7], a new design
paradigm is proposed where the entire level is created only by using existing
game content and parameters without the need of human intervention. The
choice of these parameters for generation are defined by the music. In order for
music to define the parameters, different musical features are extracted using
Musical Information Retrieval(MIR) tools. These features can then be mapped
in various different ways to the game parameters. Many different kinds of levels
and game play can be generated this way by simply changing to new pieces of
music. However, it must be noted that this paper only uses musical features
to indirectly influence aspects of the level. Whereas this thesis will link some
features directly to the level design, rather than only use them as parameters.

1.6 System Overview

The system that will be described in this thesis is quite large and consists of
many different components. To provide the reader with enough information
a visual aid is provided in Figure 1.1. It shows all the components used to
generate a final level, divided up under different categories. The main modules
are the feature extraction(Chapter 3), the Level Generator(Chapter 4) and the
Genetic Algorithm(Section 4.6).

Figure 1.1: An overview of the overall system and its components. Generated
entities are denoted with green, constraints are denoted in blue and other pro-
cesses are shown in orange.
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Chapter 2

The Impossible Game

This chapter contains information about the game that was chosen as subject
for this thesis. Firstly, a brief introduction to the game is given. Subsequently,
certain aspects such as obstacles and rules are described to familiarise the reader
with the environment of the game. Following these sections, the characteristics
which make the game stand out are defined. Ultimately a brief overview of the
clone of The Impossible Game is given showing off the user interface.

2.1 Original Game

The Impossible Game is one of the best selling games on the Xbox Live Indie
Game Store made in 2009 by FlukeGames1. It is a minimalist platformer with
only one jump button the player can use. Jumping over a series of spikes, pits
and blocks to get to the finish may sound easy, but as its name implies, this
game could possibly be one of the hardest games ever. The technical genre of
The Impossible Game is a 2D Auto-runner combined with a rhythm game. The
levels tend to be closely integrated with the music, giving the player a feeling
of being synchronised with the music.

There are some qualities to The Impossible Game that are harder to quantify.
Firstly, this game gained popularity, as the name suggests, due to its apparent
difficulty to play. Every level requires the players full attention to the level and
the rhythm of the music. The actions the player performs in the game are often
closely linked to the music playing in the background. This gives off a feeling
of synchronicity between the game and the music.

The intensity of the music used plays a big role in the overall difficulty of
the levels. As the player progresses through levels the rhythm used for each
level gets progressively faster. Furthermore, the game is also characterised by
a very localised level of information. Meaning the player does not have much
knowledge of the obstacles coming ahead, at most 3 obstacles are visible ahead
of the player at once. The localised information can be overcome once the player

1https://impossible.game/1/
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is familiarised with the level and the music, making the game more predictable
and less difficult.

2.1.1 Environment

The Impossible Game has a minimalist style, making the most of the few com-
ponents available. Together these components form the basis of every level and
describe the overall environment of the game. This section will list and explain
all the components that create the environment. The different components can
generally be divided into 3 types: deadly obstacles, neutral obstacles and the
player.

Deadly Obstacles

The first type of obstacle is of the deadly kind. These are obstacles that, when
touched by the player, immediately result in a game over. These obstacles are
the spike and the lava, examples of these can be seen in Figure 2.1(b), where
the spikes are represented by the dark grey triangles with white outline and the
lava is the black rectangle without outline. These obstacles can be avoided by
using the jump button at the right time.

(a) Sample game play of the player jumping
over a spike

(b) Sample game play of the player sliding
on a platform

Figure 2.1: Sample of game play situations in The Impossible Game

Neutral Obstacles

The neutral obstacles also consist of 2 components, the platform and the block.
The platform is a constant in every level and is represented as the white line
horizontally spanning the width of the screen. This essentially serves as the
ground and limits the player from going lower. It is not dangerous to the player
as it is not possible for the player to collide with it in any way to cause a game
over. Other pieces can be placed on top of the platform. Both the lava and spike
components are allowed on top of the platform as well as the block component.
Represented by a black square with white outline, the block component is the
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only component that can both be used to run/jump on top of, and cause a game
over when the player runs/jumps into it from the side.

Player

The third type of component, the player, is represented as a orange square with
a black edge enclosing it. The player moves to the right at a constant speed and
is also able to jump, making it the only dynamic component in the game.

Starting Setup

The starting setup for this game is the same for every level. The player starts
on the left side of the screen and is static until the game commences. To the
right, the player will possibly see the first obstacles lined up for the level. A
small silence will be replaced by the music beginning to play and the player
moving to the right, the game has started. The player has only one action at
their disposal, a dedicated button can be pressed to perform a jumping action.
The basic starting position can be observed in Figure 2.2.

Figure 2.2: The basic starting position of the game
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2.1.2 Rules

While a detailed list of official rules is not provided by FlukeGames, an attempt
will be made in this section to do just that. By using and observing the game
client a set of rules can be inferred. The scope of the game is limited enough
to determine these rules from mere observation. However, it must be noted
that these rules could become outdated information in case that the rules are
changed or new content is added that requires additional rules. As of the pub-
lishing of this thesis, these rules are still accurate.

The main objectives for the player of the game are threefold:

• Make it to the end of the level

• Avoid the dangerous obstacles on the way

• Use as few attempts as possible

The rules underlining the game are as follows:

• The player moves at a constant speed to the right, no returning is allowed

• The player is allowed to jump at any time if and only if:

– The player is touching the platform

– The player is touching the top of a block whilst not touching a deadly
obstacle at the same time

• Every time there is a game over, the attempt counter is incremented

• The game is over when one or more of these losing conditions are met:

– The player runs/jumps into the side of a block

– The player runs/jumps into the side of a spike

– The player jumps on top of a spike

– The player jumps on top of a lava component

• The level is completed once the win condition is met:

– The player reaches the finish line

15



2.2 Clone

The Impossible Game is not open source, meaning that the original game engine
could not be used to build a level generator for. This necessitates the creation
of a clone for this game. There are few clones available online, and each of them
is less than desirable. Therefore a clone was created from scratch to mimic the
original game.

The clone consists of 3 different scenes. Firstly the main menu, as shown in
Figure 2.3a. The main menu consist of 3 options that can be selected by using
the UP and DOWN arrow keys and pressing ENTER. The currently selected
option is highlighted in white.

(a) The main menu, the player can se-
lect a level, the tutorial or quit the
game.

(b) The tutorial level, the player gets
the chance to read the rules and fa-
miliarise themselves with the mechan-
ics and obstacles of the game.

(c) The basic starting position of the
game.

Figure 2.3: The different scenes in the clone

If the user selects the “tutorial” option, the tutorial level depicted in Figure
2.3b pops up. Here the player can practice navigating past the various obstacles
available in the game, as well as read up on the rules they need to follow.
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Alternatively, if the user wants to select a level to play they must navigate
to the level option and use the LEFT and RIGHT arrow keys to select the
specific level. This leads the user to the game screen as depicted in Figure
2.3c. A audible countdown is heard after which the music starts and the game
has commenced. The player can decide to jump by pressing the SPACE key.
Finally, if the user selects the “quit” option on the main menu the window will
close. The clone of the game was written entirely in Python 3.8 by making use
of the PyGame1 library.

2.2.1 Physics Constraints

The physics system consists of several key variables. The gravity, x and y
position of the character, the jump velocity and the players horizontal velocity.
The original The Impossible Game utilised songs of similar BPM, leading to the
physics system and level pieces being unchanged between levels yet still leading
to a synchronous experience by the player. For example, the jump distance
between two pieces is always 3 empty blocks of space/obstacle to jump over.
However for this thesis different musical genres with often very different BPM
were used. Since the speed of the player is dependent on the BPM of the seed
song, the physics system had to be adapted to suit these different speeds. In
order to be able to use the same level pieces for songs of different BPM compared
to The Impossible Game, the gravity should adapt to the speed of the player
to ensure that the players jump distance remains the same. This was done
by calculating the players gravity by slowly incrementing it and simulating the
players jump distance. This method results in the player being able to jump
the same distance regardless of the song being used to generate the level.

1https://www.pygame.org/
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Chapter 3

Music Feature Extraction

This chapter will provide an overview of Music Information Retrieval(MIR)
and the types of features that can be extracted. Furthermore, the processes
underlying the extraction of the wanted features are explained in Sections 3.2.1,
3.2.2, 3.2.3. At the end, a brief overview of the tools used for feature extraction
is given.

3.1 Music Information Retrieval

Research into Music Feature Extraction also known as Music Information Re-
trieval (MIR) started in the 1990s [7]. In the early days, research was heavily
focused on symbolic representations of music such as the MIDI format. Over
time with the increase of computing power, MIR has adapted its focus around
extraction and inference of meaningful features, indexing of music and search
retrieval schemes [3]. From these subfields, extraction of meaningful features
will be the central focus of this research.

The features used in this thesis are distinguishable via their abstraction
level. The abstraction level covers the range of low-level signal features such as
pitch or loudness to semantic descriptors of high abstraction level such as genre
or mood [3]. These features can be used to describe a song’s characteristics,
searching for similar music or classify the music based on genre.
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Low-Level Features

Low-level features are extracted within the time and frequency domains repre-
sentations of a song.

Features derived in this way from an audio signal are quite meaningless on
their own, as they describe very time sensitive information about the song. How-
ever these low-level features can be used to infer higher level features. The main
lowest level features consist of pitch, loudness, timbre and spectral moments as
described by Wessel [8].

With these lowest level features, several other low-level features can be in-
ferred. For example, in order to compute the rhythm or instrument class of a
song, the loudness and timbre features can be used. Furthermore features such
as melody, harmony and chords can be extracted by using the pitch feature.
The melody and the chords can be used to describe aspects of a song like the
musical key it is played in.

There are several rhythmic features that can be computed with timbre and
loudness. Mainly the timing, tempo and grouping of rhythms are extracted this
way. An example of this rhythm extraction can be observed in Figure 3.1, where
the beat positions, loudness and beats per minute (BPM) can be calculated. The
top image represents the initial musical signal in the time frequency domain.
The middle image shows the estimated onsets of beats based on the loudness
and timbre features. The bottom image shows where only the main beats have
been preserved as the beat positions, thus an estimate of the BPM can be made.

Figure 3.1: Rhythm seen as periodicity of onsets. Example of an input signal
(top), estimated onsets (middle), and estimated beat positions (bottom). [3]
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High-Level Features

All the aforementioned low-level features can be used to infer higher level fea-
tures by using classification or auto tagging methods [7]. Research efforts on
music classification have been mainly concerned with classifying music with
respect to instruments [9], genre [10], mood [11] and culture [12]. These under-
lying technologies work to a certain extent, but show a “glass-ceiling” effect [3],
with the state-of-the-art algorithms yielding around 80% accuracy. Lippens et
al. [13] and Seyerlehner [14] have demonstrated a cause of this effect by showing
that human agreement on music belonging to a certain genre reaches between
75% and 80%. Meaning that the training set used to train the classifier will
differ depending on the expert labelling the songs.

3.2 Feature selection

In order to select a set of musical features to be extracted several aspects should
be considered. The main consideration is how a musical feature could be linked
to features in a video game.

The most straightforward feature to select is the rhythm. Following the
definition of Desain and Windsor [15], rhythm is related to the architectural
organization of musical events along time and incorporates regularity and dif-
ferentiation. Timing actions on a musical rhythm has been a staple of music
based video games, this is also very prevalent in The Impossible Game. The
aim of this feature is to have the player experience a sense or rhythm and syn-
chronicity with the music.

The second selected feature was the notes of the song. This was chosen
instead of chords or key of the music since the notes span a shorter time and
describe the music in higher detail. The idea is to transfer some of this detail
into the final level. One can imagine a song building up to a chorus, the notes
will often climb higher towards a climax. If at the same time the player starts
climbing higher it adds to the immersion experienced by the player. This can
add to the feeling of anticipation of the player about what is to come as well.

Finally, the genre of the song was chosen to be another feature. A connection
between genre and a game is less concrete compared to notes or rhythm. But the
idea is to have the genre determine a more global aspect of the level generation.
In some games genre has been used to alter the visuals of the level giving of
a different mood. Intuitively, more intense music like rock or hip hop should
have different types of levels compared to classical music. An explanation of
how each of these features is extracted can be found in next sections.
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3.3 Tools for feature extraction

The are a wide array of frameworks, libraries and tools that perform Musical
Feature Extraction. Some of the popular examples include Essentia1(C++ Li-
brary), Spotify WEB API2(cross platform). libROSA3(Python library), jMIR4(Java
library) and Sonic Visualiser5(Visual application). Most of these tools have sim-
ilar audio analysis capabilities, due to the same algorithms being used in them.
The focus in this study is the libROSA library, because the project was written
in Python, and Spotify WEB API to classify the genre of each song.

3.3.1 libROSA

LibROSA1 is an open-source Python library that can be used for audio analysis
and MIR. The library has a focus on algorithms that analyse an audio signal,
with a specific focus on music. It provides the building blocks to build a MIR
system. More specifically it includes all the low-level features that are desired
for this research, it can extract rhythmic features as well as tonal features. It is
however lacking in the classification department and can not estimate the genre
of an audio file.

3.3.2 Rhythm Extraction

The rhythm features extracted for this research are twofold: the Beats-per-
Minute(BPM) and the tracked beats of the song. Firstly, the tracked beats
are obtained by using the corresponding function in libROSA named beat track.
This is a dynamic programming beat tracker which extracts the individual beats
of a song. The beats are detected in three stages:

1. Measure onset strength

2. Estimate tempo from onset correlation

3. Pick peaks in onset strength approximately consistent with estimated
tempo.

Initially the strength of onsets is measured. An onset refers to the beginning
of a musical sound, often a musical note or a beat of a rhythmic instrument.
Onsets can be detected by a variety of features, such as changes in detected pitch
and increase in spectral energy(a measure of how quickly the power spectrum of
the signal changes). There are many more, however for the sake of brevity these
will be omitted in this thesis. By correlating the onsets returned in step 1, the
tempo can be estimated. This estimate is subsequently used to approximate

1https://essentia.upf.edu/
2https://developer.spotify.com/documentation/web-api/
3https://librosa.org/
4http://jmir.sourceforge.net/index jAudio.html
5https://sonicvisualiser.org/
1https://librosa.org/
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which peaks in the onset strength are consistent with the tempo. The most
likely onsets are selected to form the tracked beat.

It is important to note that not every single rhythmic element of the song
is extracted this way. Only the main rhythm of the song. Figure 3.2 illustrates
this concept in more detail. A more detailed explanation of this method can be
found in [16].

Figure 3.2: An example of the returned beats by the beat tracker. Not every
rhythmic element is included as shown by the onsets.

The extraction of the BPM of the song starts the same way as the beat
tracker. Firstly, the strength of the onsets is measured which yields the mag-
nitudes of the onsets as shown in the top half of Figure 3.3. Via a local onset
auto-correlation method as described in [17], a tempogram is constructed as
shown at the bottom of Figure 3.3. The tempogram is a feature matrix that
uses local estimates to construct a more global image with respect to the song.
The prevalence of a certain tempo at a moment in time is displayed by the pur-
ple to orange gradient, where orange denotes a higher prevalence of the tempo
at that moment.
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Figure 3.3: Onset detection (top) and the tempogram (bottom). The tem-
pogram is a feature matrix which indicates the prevalence of certain tempi at
each moment in time.

3.3.3 Notes Extraction

In order to use the notes to base the levels on, a timeline of notes should be
extracted. Each note should take up an interval of time, these intervals and notes
should guide the height of the generated game level. In order to achieve this a
fundamental frequency (F0) estimation is performed along the time dimension.
The fundamental frequency is estimated using the Fourier transform, which
yields a frequency in Hz. These frequencies can then be converted to a height
map, with the difference in frequency serving as a height difference between
level pieces.

The algorithm used for this purpose is the probabilistic YIN (pYIN) al-
gorithm. pYIN [18] is a modified version of the YIN algorithm [19] used for
fundamental frequency estimation. In the first step of pYIN, F0 candidates
and their probabilities are calculated using the YIN algorithm. Secondly, a
Viterbi decoding [18] is used to estimate the most likely fundamental frequency
sequence.

As can be seen from Figure 3.4, the extracted frequencies form a sort of
height line on their own. This is part of what is used to score the height line of
the levels.
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Figure 3.4: Fundamental frequency(F0) estimation using the pYIN algorithm

3.3.4 Genre Extraction

Genre classification is done via the Spotify Web API, the exact method is un-
known as Spotify keeps their methods private.

3.3.5 Spotify WEB API

The Spotify WEB API2 provides users access to data from Spotify’s library,
such as playlists, songs, podcasts and more. Every single song in the Spotify
library has been examined through a series of audio analysis and classification,
from which the results were made available to users of the API. Although this
tool can not be used for every single song in existence, the scope of the library
was large enough to have plenty of choice with regards to the music. Since all
analyses has been done before the songs are added into the library, accessing
information about the songs is very fast. Unfortunately however, using the
web API requires an internet connection and a premium Spotify account, which
make it less accessible for the average person. However this was not an issue in
this research.

2https://developer.spotify.com/documentation/web-api/
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Chapter 4

Level Generator

This chapter will cover the topic of the level generator created for generating
levels for The Impossible Game. It contains an overview of the system as a
whole, followed by a explanation of the rhythm generator used to generate the
level components on locations that will fit the musical rhythm. Afterwards an
overview of everything involved in generating the level geometries based on the
rhythm is given. This consists of the level pieces used to construct a level, the
grammar by which a level is generated and the algorithm with which a level is
generated. Subsequently, the critics with which the levels receive a score are
defined. Finally, the Genetic Algorithm used to evolve the levels is given.

4.1 System Overview

To be able to generate levels from a piece of music a three step plan is used.
Firstly, as previously explored, the musical features are extracted from the

given music. These features are passed on as input to the level generator, where
the rhythm is used to generate candidate levels. The other features are used to
partially critique the level and give each candidate level a score. These steps
will be further explored in their respective sections.

Secondly, the input rhythm is used to generate level geometries for candidate
levels. A level geometry is the collection of all obstacles(platform, boxes, spikes,
lava) of a single level. These geometries are critiqued by using musical features
such as notes or genre. The level geometries are generated via a two-tiered
grammar based approach. They are subdivided into different sections, with
each section containing a level piece, also called a rhythm group [5]. Generating
level geometries is done in two stages. The first stage of the process takes the
musical rhythm of a song and generates a set of actions that fit the musical
rhythm. For the sake of clarity this set of actions will be referred to as action
rhythm. The second stage of this process takes this action rhythm and uses a
geometry generation grammar to generate a level geometry. From this grammar
many different levels are generated that form a candidate set from which the
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final level will be selected. This process can be observed in Figure 4.1.
Once a set of candidates have been generated and critiqued, the fittest can-

didates are selected and used to create a new generation of candidates. This is
done by using a Genetic Algorithm(GA). Over generations the levels are grad-
ually improved to fit the desired criteria.

This approach includes both a generation and a testing step and is thus
a generate-and-test approach to PCG. In fact, the level generator is a special
case of generate-and-test, known as search-based PCG (SBPCG), as defined by
Togelius et al. [20]. This narrower definition requires a test function that does
not simply accept or reject levels, but scores them on a continuum. This type
of function is called a fitness function. The specifics of the fitness function for
this application will be given in its own section. Furthermore, SBPCG requires
newly generated candidate levels to be contingent on the fitness value assigned
to previously generated candidates. This is ensured by using a form a elitism
in the selection process of the GA.

Since there is no general proof of convergence of GAs [21], there is no guar-
anteed completion time or solution quality that can be expected. Therefore it
was determined that this SBPCG approach was unsuitable for generating the
levels online, and is better suited to offline generation. This is further supported
by the fact that the analysis of musical features requires context based on the
entirety of the song. For example, when rhythm is extracted, likelihood esti-
mations are done on singular beats based on the global context of all beats to
estimate the most likely rhythm sequence.

Figure 4.1: An overview of the level generator and its components. Generated
entities are denoted with green and processes are shown in orange.

4.2 Rhythm Generator

Rhythm groups are non-overlapping, small sections of a level that describe a
sense of rhythm the player needs to follow. To output these rhythm groups,
the rhythm extracted from the song as described in Section 3.3.2, is combined
with one of two possible actions: JUMP or NO JUMP. To introduce variety,
these actions are assigned with equal probability to each extracted beat from
the song. Once this action rhythm has been generated it is used to generate all
the geometries of the geometry generator. An example of an action rhythm is
given in Table 4.1, here the first 4 beats of Figure 3.2 are used to create this
example action rhythm.
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Time (s) 0 0.45 0.95 1.45
Action JUMP JUMP NO JUMP JUMP

Table 4.1: A simple example of an action rhythm based on Figure 3.2, the action
is supposed to be performed at the time given.

4.3 Geometry Generator

The Geometry Generator’s responsibility is to take the action rhythm from the
Rhythm Generator and use it to generate many level geometries. This can be
done by using the action rhythm and combining it with a geometry generation
grammar. Generative Grammars are most often used in theoretical linguistics,
it aims to provide a set of rules that precisely predict which combinations of
words are able to make grammatically correct sentences. In the realm of PCG
however, a generative grammar can be used to define the rules of creating a
level. The words in linguistics are parallel to level pieces. The rules of the
game determine whether combinations of these level pieces are allowed, which
is parallel to being grammatically correct. The purpose is to generate a wide
array of interpretations for the same action rhythm. These interpretations vary
due to the different possibilities for each action as dictated by the generation
grammar. For example, a single JUMP action can result in jumping to a higher
level, or jumping over an obstacle but maintaining the same height after the
jump. This can be observed by considering Figure 4.2 (g) and (h), these can be
generated equally likely when the player needs to jump to a higher level, thus
resulting in a differing level geometries. The generation of these geometries is
stochastic in nature as multiple level pieces can be used for interchangeably
at the same place in a level. The stochastic generation process allows for the
exploration of different possible level geometries for the same song.

4.3.1 Level Pieces

From The Impossible Game a set of 13 distinct level pieces could be identified.
These pieces were named and used to define the geometry generation grammar.
Determining which piece belonged where in the grammar was done by consid-
ering the height difference between the start and end of the piece. If the end
height was higher the pieces could only fit with a JUMP UP action, whereas if
the heights are the same it can fit a JUMP FLAT action or a NO JUMP FLAT
if there is no obstacle.

The first level piece is the most basic one. An empty platform(Figure 4.2
(a)) without any blocks, spikes or lava on top of it. This piece is useful to add to
the beginning of a level, giving the player some time to prepare for the obstacles.
It can also be used to give the player some respite for sections in a song that
are calmer and do not require any obstacles.
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(a) empty platform (b) fall down (c) jump down

(d) spikes flat 1 (e) spikes flat 2 (f) spikes flat 3

(g) jump up 1 (h) jump up 2 (i) flat blocks

(j) flat blocks spike 1 (k) flat blocks spike 1 (l) flat blocks spike 1

(m) flat jump lava

Figure 4.2: All the level pieces visually represented with their respective names.

The next level pieces are a set of 3 variations on the same obstacle. In The
Impossible Game a varying amount of spikes is used, the higher the amount of
spikes, the more precision it requires to successfully jump over them. Figure 4.2
(d), (e) and (f) show the three different variations on spikes on the platform.

The following level piece can be used when no action is performed by the
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player, resulting in the player sliding over the gap from the leftmost block to
the next block. The piece is depicted in Figure 4.2 (b).

In contrast to the previous piece, the jump down piece is used when the
player performs a jump action. However both result in a lower player height at
the end of the piece, thus both pieces can be used when the notes in the song
get lower between pieces. The geometry of this piece is shown in Figure 4.2 (c).

The next two pieces are the only two pieces used to jump to a higher height.
They can be used when the player jumps. Most commonly they are used when
the notes go higher between pieces. Examples of these pieces can be found in
Figure 4.2 (g), where the jump height is only one block, and Figure 4.2 (h)
which has a height difference of 2 and requires more precision than the 1 block
jump. In Figure 4.2 (g), the leftmost half block does not belong to this level
piece.

Similar to the empty platform level piece, the flat blocks piece also serves as
filler piece when the players action rhythm dictates that no action should be
used. This piece’s geometry can be seen in Figure 4.2 (i).

A more dangerous version of flat blocks, these next 3 pieces are variations
with different numbers of spikes. Similar to the spikes flat (1,2,3), the more
spikes in a variation, the more precise the player needs to be to cross the level
piece. All variations of this piece and their names can be seen in Figures 4.2
(j), (k) and (l).

The final level piece from the 13 is the so called flat jump lava, similar to the
pieces in Figures 4.2 (j), (k) and (l)it requires a jump to cross the piece. Per-
forming no action will lead the player to fall down into the lava. The geometry
of this piece can be seen in Figure 4.2 (m).
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4.3.2 Geometry Generation Grammar

Now that all pieces have been defined and named, they can be integrated in the
Geometry Generator. To define which pieces fit the players action, a Geometry
Generation Grammar is used. These grammars have been used previously to
generate levels, missions and quests [22] and is thus well suited for this task.
For this particular grammar the common Backus-Naur Form (BNF) is used.

This BNF grammar can generate basic structures of a level, however pa-
rameterising this to move towards some desired level structures is not possible.
That is why this BNF grammar generation is combined with an evolutionary
algorithm [23], where certain features of the levels can be parameterised and op-
timised for. The following is the proposed BNF grammar for the level generator.

GEOMETRY GENERATION GRAMMAR

JUMP UP →< jump up 1 > | < jump up 2 >
JUMP FLAT →< spikes flat 1 > | < spikes flat 2 >

| < spikes flat 3 > | < flat blocks spike 1 >
| < flat blocks spike 2 > | < flat blocks spike 3 >
| < flat jump lava >

JUMP DOWN →< jump down >
NO JUMP UP → NO JUMP FLAT
NO JUMP FLAT →< flat blocks > | < empty platform >
NO JUMP DOWN →< fall down >

Recall the action rhythm has at each beat time an action for the player
to perform. Either JUMP or NO JUMP. Before the generation process a ran-
dom direction is assigned to each action, resulting in 6 options: JUMP UP,
JUMP FLAT, JUMP DOWN, NO JUMP UP, NO JUMP FLAT,
NO JUMP DOWN. Each action has one or more possible level pieces that fit
with the action as shown in the Geometry Generation Grammar. To give an
example, the action rhythm from Table 4.1 is adapted to reflect the direction of
movement that was assignment before generating the geometry. The result of
this can be observed in Figure 4.2.

Time (s) 0 0.45 0.95 1.45
Action JUMP UP JUMP FLAT NO JUMP DOWN JUMP FLAT

Table 4.2: A simple example of an action rhythm with directions based on
Figure 4.1, the action is supposed to be performed at the time given.
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4.3.3 Geometry Generation Algorithm

The Geometry Generation Grammar from the previous section was used as a
guideline to define the Geometry Generation Algorithm. By generating the
level pieces with equal probability, the most variation amongst interpretations
is achieved.

Algorithm 1 Geometry Generation Algorithm

1: Initialise list of level pieces and their positions
2: Put en empty piece as first in the list
3: for Every possible location for a level piece do
4: if The player action is JUMP then
5: Choose direction UP, FLAT or DOWN with equal probability
6: Pick level piece based on the direction and the geometry grammar
7: if JUMP UP then
8: Choose jump up 1 or jump up 2 with equal probability
9: end if

10: if JUMP FLAT then
11: Choose spikes flat (1,2,3) or flat blocks spike (1,2,3) or

flat jump lava with equal probability
12: end if
13: if JUMP DOWN then
14: Choose jump down
15: end if
16: else (The player action is NO JUMP)
17: Choose direction UP, FLAT or DOWN with equal probability
18: (NOTE: UP and FLAT have the same result for NO JUMP)
19: Pick level piece based on the direction and the geometry grammar
20: if NO JUMP UP or NO JUMP FLAT then
21: Choose flat blocks or empty platform depending on the end height

of the previous piece.
22: end if
23: if NO JUMP DOWN then
24: Choose fall down
25: end if
26: end if
27: end for

The algorithm results in a sequence of level pieces being generated, with no
pieces overlapping each other. This implies that each level piece is a necessary
component for the player to be able to complete the level. The levels resulting
from this algorithms alone are rhythmically synchronous with the beat of the
music. However, they may not be closely matched to the pitch or genre of the
song. An example of these could be a few consecutive jump up 1 pieces whereas
the pitch of the song tends to lower, or a very calm song that contains a high
percentage of spikes when you would expect the level to be more calm.
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To illustrate the function of the geometry generation process, consider the
action rhythm with direction obtained in Table 4.2. The example below shows
a possible outcome of such a action rhythm being applied to the geometry
generation algorithm.

Figure 4.3: An example of a level generated by the action rhythm given in Table
4.2. The names of the corresponding level pieces are as follows: a) jump up 2,
b) flat blocks spike 3, c) fall down and d) spikes flat 2

32



4.4 Critics

Using a grammar as presented in this thesis commonly leads to over-generation
[24]. Over-generation happens when the constraints specified in the grammar
are not tight enough, leading to results that are often undesirable. This is caused
by the level design space being too large. Such a grammar is good at generating
levels based on local constraints. These constraints are based on the action by
the player(JUMP, NO JUMP) and the direction(UP, FLAT, DOWN). However,
this grammar does not take into account global constraints. These constraints
come in the form of the musical features and other desired level features. For
example, the height of the notes of the seed music track is a desired path to
follow for the level generator, as the aim is to produce a level that is synchronous
with the music track. Following this track can not be done with a grammar, as
every music track has a different notes line.

In this section these constraints will be explored in the form of level critics.
Smith et al.[25] introduces the notion of critics as follows. Given a generated
level, a critic can perform tests over the entire level to determine how well a
given global constraint is met. Each critic analyses the data of a level and
returns a score between 0-1 based on its specific requirements. This score is a
partial measure of what makes a level desirable. Combined, these critics achieve
a more well rounded evaluation of a level, which should yield an overall more
desirable level. The used critics are a combination of adapting the proposed
critics from [25] and [24], and proposing new critics based on 3 key desirable
aspects that should be included in the final levels. These components consist
of:

• Song Similarity: A measure encapsulating the level synchronicity with the
seed music track.

• Difficulty: A measure of the level of skill needed to complete a level, based
on the type and frequency of obstacles.

• Fun: Hard to define exactly, but variation in the level structure is definitely
a part of it, as well as variation in obstacles.

Because the definition of “fun” is rather fuzzy, it is left up to the player/survey
taker to determine whether it is a fun level or not. Furthermore, some abbrevi-
ations for critics will be used in this chapter. A brief summary of these can be
found below.

• LC : Line Critic (score)

• CFC : Component Frequency Critic (score)

• EC : Emptiness Critic (score)

• VC : Variety Critic (score)

• JC : Jump Critic (score)
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4.4.1 Song Similarity

Line Critic

One of the musical features given as input to the level generator is the height line
of the notes, which is extracted from a song as described in Section 3.3.3. This
line serves as a guideline for the level that is being generated. More specifically,
the cumulative squared distance of the height line of the level to the height line
of the song is divided by the theoretical maximum cumulative squared distance.
The concept behind this critic was adapted from the proposed line distance critic
in [25] to work with musical input. Figures 4.4 and 4.5 show respectively good
and bad examples of the distance between a notes lines and a height line of a
level. The distance shown is then divided by the theoretical maximum distance
between these two lines. This ratio is then subtracted from 1 in order to make
the critic score 0 if the distance between the two lines is equal to the theoretical
maximum, and 1 if the lines match exactly. While it is rare to generate a level
that matches a notes line exactly, this critic should allow the level to evolve
towards being similar in feeling to the song. ie. If the song has a section with
higher notes, the level will generally follow suit.

Figure 4.4: An example of a level height which would result in a good line critic
score.
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Figure 4.5: An example of a level height which would result in a bad line critic
score.

LC = 1− (squaredSumDistance/squaredMaxDistance)

4.4.2 Difficulty

Component Frequency Critic

The component frequency critic is a critic that is based on the proposed compo-
nent frequency critic in [24]. It calculates the ratio of dangerous spikes relative
to the amount of harmless boxes. This ratio is then subtracted from the desired
ratio which is specific to each genre of music. Table 4.3 shows the desired ratios
for each genre.

Classical Jazz Electronic Rock Rap

0.05 0.15 0.25 0.35 0.55

Table 4.3: A table showing the desired spike ratio for each genre of music.

CFC = 1− (SpikeRatio−DesiredSpikeRatio)2

Using 1 minus the squared distance ensures that the level will evolve towards
the desired ratio, as well as get punished more the further it is away from the
ideal ratio. The desired ratio for each genre of music was determined by the
intensity of the music genre. Since classical music is often the calmest from the
set, it was given the lowest desired ratio of spikes. Jazz and Electronic are often
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wilder than classical music, and thus get a higher ratio. This logic also applies
to Rap and Rock, which are set at a highest ratios. The main idea behind using
the spike ratio is that intenser music will yield more dangerous levels, potentially
suiting the music better.

Emptiness Critic

The emptiness critic was put in place to discourage the level generator from
generating completely empty, or mostly empty levels. This is undesirable since
this would lead to a lack of difficulty and engagement for the player. The
score for this critic is calculated by the ratio of level pieces that are not the
empty platform piece, over the total amount of level pieces.

EC = NumNonEmptyP ieces/TotalNumPieces

4.4.3 Fun

Jump Critic

The next critic is the Jump Critic. This critic was designed to counteract
monotonous level with very few jumps. This was especially prevalent in calmer
songs while testing. The jump critic scores a level based on the ratio of jumps
over the total amount of actions in a level

JC = NumJumpActions/TotalNumActions

Variety Critic

The variety critic was implemented with the aim to encourage the generated
level to have a lot of height variation in it. This was done by the logic that
a more varied level should be more fun to play for the user. The score is
calculated by computing the variance of the level height line and the variance of
the theoretical maximum height variation in a level. The theoretical maximum
is a level that has alternating jump up 2 pieces and fall down piece, this results
in a constantly alternating height between 0 and 2. This critic attempts to
encourage the evolution of levels to move towards less monotonous levels. The
more variation in level height, the higher the score. Figures 4.6 and 4.7 show a
good and bad example of the variety critic score.
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Figure 4.6: A small example of what score the variety critic would give.

Figure 4.7: A small example of what score the variety critic would give.

V C = V ar(HeightLine)/V ar(MaxV arianceLine)
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4.4.4 Combining Critics

All the aforementioned critics scores are added up and serve as the overall fitness
score of a level. It was determined to not use a weighted sum since there was no
justification for weighing one critic over the other. Feedback on the critics and
their effectiveness are determined via the user survey as described in Section
5.2.1. Based on the feedback certain critics could be weighed more or less to
generate even more enjoyable levels.

Fitness Function

The fitness function is simply a linear sum of the critics. No weights were
given to the critics since determining these is not possible without some user
feedback on what types of level are more desirable. Only then can the weights
be fine-tuned a bit.

Fitness = LC + CFC + EC + JC + V C

From the three classes of fitness function for PCG purposes as proposed by
Togelius et al. [21], this fitness function is of the direct fitness function type.
This is characterised by extracting features from the generated levels and using
these to map directly to the fitness function. As opposed to a simulation-based
or player interaction based function.

4.5 Global Pass

A global pass can be used to enforce some global constraints on a level, as well
as decorate the levels with collectable items if so desired. In The Impossible
Game, no collectable items are available and thus the global pass will only be
utilised to enforce the playability of a level. This means that the whole level is
checked such that it conforms to the constraints of the level generator. More
specifically this consists of making sure the level pieces are linked together and
there are no height differences which are impossible to jump for the player. The
Geometry Generator always generates feasible levels. However, since the aim is
to evolve the candidate levels given by the Geometry Generator, which requires
reproduction operators such as mutation and crossover, a global pass can be
used to ensure that mutated and reproduced individual levels still maintain the
constraints as required by the game.

4.5.1 Smoothing Algorithm

The global pass comes in the form of a smoothing algorithm. The algorithm
checks the level piece by piece, comparing the heights of the pieces to ensure it is
traversable by the player. When a faulty connection is discovered, the algorithm
simply replaces the pieces after the faulty connection with new pieces that are
linked up with the previous ones. To illustrate this idea more clearly, observe
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Figure 4.8 which shows the effect this algorithm has on a sample level. The
pseudo-code for this algorithms is as follows.

Algorithm 2 Smoothing Algorithm

1: Input: Level
2: for Every level piece do
3: Calculate height difference between current and previous level piece.
4: if Absolute value of height difference > 0 then
5: if Height difference is negative then
6: Set current piece as new piece of height previous piece - 1
7: else
8: Set current piece as new piece of height previous piece + 1
9: end if

10: end if
11: end for

Figure 4.8: Two examples of the effects of the smoothing algorithms.
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This smoothing algorithm was used in combination with the genetic algo-
rithm, which will be described in the next section.

4.6 Genetic Algorithm

As mentioned before, the geometry generator by itself can generate a wide
variety of levels. Many of which are undesirable with regards to the music track.
Therefore an evolutionary method is applied to optimise towards certain criteria.
More specifically, a Genetic Algorithm (GA) is used for this purpose since there
is a large amount of variables that determine what makes a level desirable.
Using simpler methods based on local search techniques such as Hill Climbing
or Tabu Search are insufficient to solve towards a global optimum in this vast
design space. This section will present the specifics of the used GA. In particular,
Section 4.6.1 will lay out the details on the genetic representation for the GA.
Subsequently, Section 4.6.2 briefly describes the manner of reproduction and
mutation used to determine the next generation of candidate levels. Together,
these sections form the different parts of the GA.

4.6.1 Genetic Representation

In order to use a GA to evolve levels, a genetic representation was formulated
to make it possible to reproduce and mutate them. The choice was made to use
level pieces as the genes, which would together form the chromosomes of the
individuals or levels. Since levels based on the same song have the same amount
of genes, performing crossover between these becomes easy. Each gene stores a
level piece with the complete information about the height and position of the
piece. An example of this representation is shown in Figure 4.9.

Figure 4.9: An example of the genetic representation of a level.

The chosen genetic representation has a direct encoding between the geno-
type and phenotype of each level, as per the definition in [21]. This means that
the size of the phenotype is linearly proportional to the genotype, since each
gene in the genotype can be represented exactly in the level(phenotype). This is
in contrast with an indirect encoding where there is no linear mapping between
genotype and phenotype [26]. The direct encoding was mainly used because
the aim was to have the generated level match closely to the line of notes ex-
tracted from the song. The calculation of the distance between the desired notes
line and the level height line is dependent on the position and height of each
level piece. Indirectly encoding this height and type of the piece would lead
to at least a loss of positional information. Another important consideration
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for the representation problem is the dimensionality. The problem respresenta-
tion should have the right dimensionality to avoid the “curse of dimensionality”
[27]. Essentially, this means that the dimensionality of the genotype should be
limited to avoid an exponential explosion of the search space. For this applica-
tion, this was achieved by limiting the song length to approximately 30 seconds.
The limiting of the song length was initially done to decrease the difficulty and
time spent for the participants of the user survey, but also has the side effect of
limiting the dimensionality.

4.6.2 Reproduction & Mutation

The reproduction process in this GA is mainly concerned with 3 different steps:
selection, reproduction and mutation. Firstly, for the selection process an elitism
strategy is applied that directly transfers the highest scoring individuals to the
next generation without needing to mutate or reproduce. This is done in order
to avoid the high scoring level from mutating and reproducing which could
possibly cause the level to degrade in quality.

The rest of the individuals are selected as parents to produce children through
crossover. The crossover strategy chosen was the one point crossover. Multi-
point crossover was avoided because there would possibly be more than one dis-
connected spot between the crossed over individuals. The one point crossover
reduces this to maximum one disconnection, which is easier for the smoothing
algorithm to handle correctly. This crossover method is visualised in Figure
4.10. Afterwards there is still a possibility for the new child to mutate.
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Figure 4.10: An example reproduction in the GA. The red arrow depicts the
crossover point, the bottom two individuals are the results of this crossover

The mutation works by randomly selecting a gene after reproduction has
happened. This gene is replaced by a randomly chosen level piece. Resulting in
a new possibly non-feasible level. Mutation introduces a random element to the
new generation that may not have existed before. This can result in new types
of levels being evolved with level segments that otherwise would not have been
evolved. Figure 4.11 shows this process.

Figure 4.11: An example of mutation in the GA. The green arrow depicts the
gene to be mutated, the bottom individual is the results of this mutation with
the new green gene included

42



Chapter 5

Experiments & Results

This chapter covers the experimentation that was done with the level generator.
It starts off by explaining the chosen parameters related to the Genetic Algo-
rithm and how they were obtained. Furthermore, this chapter covers the user
survey that was performed to gain some feedback about the generated levels. It
explains the reasoning behind the survey as well as the received results.

5.1 Level Evolution

5.1.1 Parameters

The parameters used for the evolutionary process were determined by trial and
error testing whilst considering the hardware limitations of the laptop being
used. The hardware limitations mainly concerned the population size of each
generation. It was therefore determined that a population size of 250 levels
was sufficient to provide ample variation between levels yet limit the processing
time and use of memory. Similarly, with the interest of processing time in
mind, the number of generations used to evolve the final level was limited to
50. Moreover, evolving levels beyond 50 generations generally yielded no higher
fitness value. As can be seen from Figure 5.1, the fitness value plateaus before
the 20th generation. Thus 50 appears to be a safe choice. More generations
have been tried, but did not result in a remarkable difference in fitness value. In
the selection a form a elitism was used where the 20 individuals with the highest
fitness values get selected directly to enter the next generation without mutation
or crossover happening. This ensures that the highest valued individual is never
lost but genetic diversity is still maintained in the population.
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Figure 5.1: Shows the development of the fitness over 50 generations.

The chance of mutation was determined by setting it to a range of values
and determining the optimal value overall. Two approaches were tested, the
first approach was a simple genetic algorithm with a constant mutation rate.
Three different values were tested for this approach, 0.5, 0.3 and 0.1. A second
approach spans the range of the mutation rates tested for the first approach. It
starts at 0.5 and gradually decreases over the generations towards 0.1. The large
mutation rate is initially used to overcome local maxima and ensures sufficient
genetic variability in the first few generations [28]. The results of the tests on
mutation rate can be viewed in Figures 5.2, 5.3, 5.4 and 5.5.

Figure 5.2: Shows the development of the fitness and variance values over the
generations. Here a constant mutation rate of 0.1 is used.
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Figure 5.3: Shows the development of the fitness and variance values over the
generations. Here a constant mutation rate of 0.3 is used.

Figure 5.4: Shows the development of the fitness and variance values over the
generations. Here a constant mutation rate of 0.5 is used.

Figure 5.5: Shows the development of the fitness and variance values over the
generations. Here a adaptive mutation rate ranging from 0.5 to 0.1 is used.

From the figures above it is clear that the different mutation rates can reach
similar average fitness values, however the variance curves do display some dif-
ference. The lower the mutation rate the faster the genetic diversity diminishes.
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Ideally, the variance displays a more gradual curve than Figure 5.2. Comparing
all the options it is clear that the adaptive mutation rate performs better in
this regards than the other constant mutation rates. Therefore the adaptive
mutation rate was used in the rest of the experiments.

5.1.2 Training

The evolution throughout the generations was performed on a personal laptop
computer. This laptop has a Intel(R) Core(TM) i5-7Y54 CPU @ 1.20GHz
processor with access to 8GB or RAM.

Each level was generated from a different song. Since 5 genres were consid-
ered in this thesis, each genre gets 2 levels in the final generated set. Each music
file used as a basis for the level generator was shortened to approximately 30
second clips. This was done in order to greatly reduce processing time of the
level generator and reduce the time needed for users to learn and complete the
levels. The songs used to generate the levels are the following:

• Level 0 [Rap] : Luv (Sic) Part 3 - Nujabes Feat. Shing02

• Level 1 [Classical] : Voices of Spring Op. 410 - Johann Strauss

• Level 2 [Rock] : Johnny B. Goode - Chuck Berry

• Level 3 [Jazz] : Bird’s Lament - Moondog

• Level 4 [Electronic] : Honda Civic - M1C4H

• Level 5 [Rap] : Feather - Nujabes Feat. Cise Starr & Akin

• Level 6 [Electronic] : Slow - Yu-Utsu

• Level 7 [Rock] : My Generation - The Who

• Level 8 [Jazz] : Breeze - Jiro Inagaki Soul Media

• Level 9 [Classical] : Nocturne No.20 in C Sharp - Chopin

The selection of these songs was party done by using some criteria, and
partly done by taking a random sample of songs from a genre and picking one
according to those criteria. Because there are millions of songs on Spotify a
random sample of 10 songs of each genre was taken. For each song of every
genre, the tempo in BPM was extracted. A selection was done eliminating
songs that had a BPM of 200 or higher. In practice this rules out the extremely
fast songs that would result in a very fast moving player, which should help for
players who have never played such a game. Furthermore, songs were listened
to and judged based on the amount of vocals exhibited in each. Songs without
vocals were generally preferred as this should lead to more successful feature
extraction from the music. However some songs were still allowed with vocals
as long as there was enough instrumentals in between. The songs with the most
vocals are the rap songs, since vocals are an integral part of this music genre.
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5.2 Validating Levels

5.2.1 User Survey

Validating whether the fitness function truly yields a desirable level is not a
straightforward task. There is no direct numeric validation for this as the feeling
of synchronicity is subjective depending on the current user. Therefore a user
survey was performed to obtain some feedback. The aim of this survey is to
gain an understanding of the relation between the proposed critics and the
notions of fun, difficulty and song similarity. By considering these notions and
the related critics, aspects of the user experience can be quantified as well as
critics adapted to improve the user experience. According to the parameters
and method explained in the previous section, 10 levels were generated.

The levels were presented in random order to the users in the survey. The
survey contains the same list of questions for every level in the set. The differ-
ences in answers between the levels serves as a metric for comparing the aspects
of each level, as well as the individual critics.

The questions contained in the user survey range from binary questions to
questions which were answered by a rating from 1 to 5. The total set consists of
10 questions, a full list of the questions can be viewed in Figure 5.6. Questions
such as “Did you try out the level?” serve as a filter whether or not to include
the users rating in the set of questions to be analysed. For example, if a user does
not try out a level, the answers to the remaining questions are not included in
the analyses since the user does not have adequate information to judge the level.
The question “Did you complete this level?” serves as a metric for completion
percentage of each level. This can give an impression of how difficult each level
is. The rest of the survey consists of qualitative questions where the user has
to give a score between 1 and 5 regarding the different level characteristics.
These type of questions will be used in the experiments and will be referred
to as question 1 through 6 in order of appearance. All the aforementioned
questions are mandatory, not giving an answer to one is not allowed. to avoid
any confusion, the numbered list of questions can be found below:

1. How fun would you rate this level?

2. Was there enough variation in the level to keep you engaged?

3. Do you think that the level was closely synchronised with the rhythm of
the song?

4. Do you think that the level was closely synchronised with the pitch of the
notes?

5. Do you think that the number of spikes used in the level match the mood
of the song?

6. Do you think the difficulty of the level matched the genre of the song?
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After this set of required questions, the user is able to leave a longer form
answer about any other subjects concerning the game. The questions were posed
in such a way that they could relate to the notions of fun, song similarity and
difficulty. The survey was shared with students of the DKE faculty at Maastricht
University, some personal friends and other willing participants recruited via
social media. The survey was anonymous so no personal information about the
participants has been gathered.

Figure 5.6: Shows an example of the questions a user had to answer for each
generated level
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5.2.2 Results

In total 19 people responded to the survey, of which 15 respondents tried out
every level. After receiving the results the data was treated in order to provide
deeper insight into the answers. Firstly, the completion rate of each level was
calculated in order to find out the relative difficulty between levels. Secondly,
an overview containing the average scores for each level per question was cal-
culated. Moreover, a correlation matrix relating all questions to each other was
established. This matrix contains the Pearson correlation coefficients between
two respective questions. Similarly, a correlation matrix between all the critics
scores was also calculated as well as an overview of the critic scores for each
level. Finally, a correlation matrix between each question and each critic was
made, giving insight into the connection between the posed questions and the
proposed critics. In the next results several abbreviations will be used to denote
critics and categories of critics. The abbreviations for critics will be the same
as the ones used in Section 4.4. The abbreviations for the categories of critics
are provided in a short list below.

• SIM : Song similarity (Line Critic)

• DIF : Difficulty (Component Frequency Critic, Emptiness Critic)

• FUN : Fun (Jump Critic, Variety Critic)

Completion Rate

The completion rate for each level was calculated from the user survey. This
was done in order to obtain a relative difficulty measure of the levels, while
also potentially seeing differences between the level difficulty for each genre.
Essentially it aims to test the hypothesis of “Level X is more difficult than level
Y” for all level pairs, and “Genre X is more difficult than genre Y” for all genre
pairs. This also shows the relationship between this experiment and the second
research question, which inquires about which musical features can be used to
influence the level difficulty among other aspects.

Table 5.1 shows the rate of completion for every level included in the user
survey. From the table it can be seen that there is quite some difference between
the completion rate of some levels. The highest completion rate is found in level
1 where half of the participants managed to complete it, followed by level 0 and 9
with 33.33% and 31.25% completion respectively. The lowest completion rate is
found in level 3 with level 8 not far behind. Interestingly enough, the two levels
with the highest completion rate are of the same genre: Classical. Conversely,
two of the three levels with the lowest completion rate are also of the same genre:
Jazz. Overall, no completion rate exceeds 50% showing the relative difficulty of
the generated levels as experienced by the participants.
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Level 0 1 2 3 4 5 6 7 8 9
Completed 33.33% 50% 22.22% 5.55% 18.75% 12.5% 12.5% 12.5% 6.25% 31.25%

Table 5.1: Table showing the completion rate(%) for each level in the user
survey.

User Scores

The users were asked 6 quantitative questions pertaining to the different aspects
of the levels. These questions are related to various level aspects including
fun, song similarity and difficulty, which is the main focus of the second and
third research questions. These questions aim to give some feedback about
which aspects of the generated levels are relatively enjoyable and which are not,
enabling the tweaking of the used level critics to obtain more desirable levels.
The average scores given by all the users per question are compiled in Table 5.2.
The bottom two rows contain the averages and variance given for each question.
Additionally, the average and variance for each level is presented as the last two
columns in this Table.

Question 1 2 3 4 5 6 µ σ2

Level

0 3.222 3.722 4.167 3.944 3.833 4.111 3.833 1.449
1 3.722 4 4.167 4.056 4 4.111 4.009 0.999
2 3.333 3.833 4 3.889 3.778 3.889 3.787 1.403
3 3.111 3.778 3.722 3.889 3.778 4 3.713 1.44
4 3.5 3.722 4.333 4.111 4.111 4.056 3.972 1.336
5 3.056 3.611 3.944 3.944 3.889 3.944 3.732 1.413
6 3.889 3.889 3.944 4 3.833 3.944 3.833 1.523
7 3.556 4.056 4.278 4.167 4.111 4.111 4.046 1.166
8 3.5 3.944 4 3.944 3.944 3.833 3.861 1.466
9 3.611 3.944 3.889 4.111 4.056 4 3.935 1.538

µ 3.4 3.85 4.044 4.006 3.933 4

σ2 1.012 1.212 1.417 1.379 1.515 1.453

Table 5.2: Averages obtained for each of the quantitative questions per level,
also includes the overall average ratings(µ) and variance(σ2).

Firstly, the highest average level score given to any level goes to level 7 with
a score of 4.046. Closely followed by level 1 with a score of 4.009. Both these
levels are the only levels to achieve a score above 4 on average. Conversely
the lowest scoring levels are levels 3 and 5, receiving scores of 3.713 and 3.731
respectively.

In addition to Table 5.2, a correlation matrix was calculated. This matrix
contains the correlation coefficients between each pair of questions, potentially
showing a correlation between certain pairs. The resulting correlation matrix
can be viewed in Figure 5.3.
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Table 5.3: Pearson correlation coefficients between each combination of ques-
tions. The colours indicate a range of values with red representing a relatively
weak correlation and green representing a relatively strong positive correlation.

Overall, this correlation matrix contains only positive correlations, the ma-
jority of which are very strong. The weakest correlations exist between question
1 and every other question, with the exception of question 2. On the other
hand, the strongest correlations can be found with question 3. Both question 4
and 5 are strongly correlated to question 3.
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Critics

To show the influence of the critics on the generated levels, an overview con-
taining the critic scores for each level was calculated. Differences between critic
values can show a bias of the level generator towards a certain critic. Under-
standing these differences can help in refining the fitness function to obtain more
desirable levels. This experiment relates to the first research question and helps
to determine which musical features are suitable for this type of level generator.
Results of these critic scores can be observed in Table 5.4.

Type SIM DIF DIF FUN FUN
Critic LC CFC EC JC VC TOTAL
Level

0 0.878 1.0 0.978 0.326 0.264 3.446
1 0.801 0.96 0.967 0.367 0.311 3.406
2 0.856 0.999 0.976 0.5 0.213 3.544
3 0.789 0.949 0.712 0.407 0.499 3.356
4 0.798 1.0 0.978 0.4 0.320 3.496
5 0.736 0.999 0.939 0.489 0.479 3.642
6 0.769 0.947 0.982 0.427 0.422 3.547
7 0.280 0.997 0.98 0.44 0.308 3.005
8 0.549 0.994 0.757 0.473 0.156 2.929
9 0.403 0.932 0.95 0.467 0.672 3.424

µ 0.686 0.977 0.922 0.429 0.364
σ2 0.038 0.001 0.009 0.003 0.021

Table 5.4: Individual critic scores for each level used in the user survey. The
average(µ) and variance(σ2) of the critic scores are shown in the bottom two
rows.

The total scores of each level in Table 5.4 indicate that level 5 received the
highest score of all the levels with 3.642. This level received relatively high
scores for each critic, having the highest score for the jump critic (JC) and
third highest score for the component frequency critic (CFC) and variety critic
(VC). On the lower end, level 8 received the lowest score of 2.929, being the only
level to be rated under 3. Notably, the component frequency critic receives an
almost perfect score in every level whereas the line critic has the most difference
between its highest and lowest rated levels.
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Table 5.5: Pearson correlation coefficients between each combination of critics.
The colours indicate a range of values with red representing a negative correla-
tion and green representing a positive correlation.

To get a better understanding of the relationship between different critics, a
correlation matrix between all pairs of critics was created and is shown in Table
5.5. This was done in order to understand the connection between critic pairs.
The aim is to test whether any of the critics are correlated or if they are inde-
pendent. The overall trend in this Table is the fairly weak correlations between
critic pairs. An outlier can be seen in the correlation between the variety critic
and component frequency critic, where there exists a very strong negative corre-
lation, meaning when the value of one increases the other decreases. There are
some other slight negative correlations between the line critic and the variety
critic and jump critic. However due to the limited magnitude these correlations
are of weak to moderate strength.
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Correlation between Critics and User Scores

The final correlation to inspect is the correlation between the critics scores and
the average score per question. This can provide insight into the relation of a
critic to the experience of the user. There are several hypothesis being tested
here, one for each critic and user scores pair. For example, the hypothesis be-
tween the line critic and question 4 would be: “The line critic forces the level to
be synchronous to the song with regards to the pitch.”. The correlation between
these critic and user score pairs are used to relate to the second research ques-
tion. Which is concerned with determining which musical features can influence
the generated level to yield an adequate level of difficulty, engagement and nov-
elty. Connecting the user scores and the critic scores is vital to understand how
well the critics reflect the users opinions. The resulting 6x5 matrix is shown in
Table 5.6. Overall, two of the critics stand out. Firstly, the emptiness critic
is positively correlated with every question asked. The positive correlation is
most pronounced between the emptiness critic and question 3. Moreover, for
each question apart from question 2, there is a moderate to strong correlation.

On the contrary, the strongest negative correlation overall is held by the
line critic. Apart from question 3 and 6, the line critic has a moderate to
strong negative correlation with every question. However, the strongest negative
correlation between any critic and question pair is achieved by the jump critic
and question 6. Furthermore, the jump critic also has a moderate negative
correlation with question 3.

The variety critic, on the other hand, does not have any strong correlations
apart from one strong negative correlation between it and question 3.

Finally there is also the component frequency critic. Apart from the strong
positive correlation between this critic and question 5, there are only weak
positive or negative correlations. Implying that this critic has no influence on
the level aspects asked in questions 1,2,4,5 and 6.

Table 5.6: Pearson correlation coefficients between each combination of critic
and question. The colours indicate a range of values with red representing a
negative correlation and green representing a positive correlation.
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Chapter 6

Discussion

This chapter provides a discussion about the results obtained in the previous
chapter. It will cover the results of the completion rate, user scores, critics
and the correlation between the latter two. The data will be used to formulate
some interpretations and to what extent the critics represent the user’s desires.
Finally, some limitations of this research which may impact the results are
brought to light.

Completion Rate

In Table 5.1 the completion rates of every level were compiled. The highest
completion rate belongs to level 1, whereas the lowest completion rate belongs
to level 3. It was observed that the two levels with the highest completion rate
were from the same genre: Classical. Similarly, two of the three lowest rated
levels also belonged to the same genre: Jazz. This alludes to the fact that there
is a tangible difference in difficulties between the genres. At first glance this
is not particularly surprising, since the component frequency critic influences
the amount of spikes based on the genre of the song, generally resulting in
levels with more spikes being more difficult to navigate successfully. However
considering that the component frequency critic sets the desired spike ratio of
Jazz and Classical to similar rates of 0.15 and 0.05, this is a remarkable result.

The expectation was that, the higher the spike ratio, the more difficult a
level would become. Since both Jazz and Classical are on the lowest end of the
desired spike ratios, it would be expected that they would end up at similar
difficulty levels on the lower end of the scale. However, the exact opposite has
happened. The Classical music yielded the least difficult levels, whereas Jazz
resulted in a much higher difficulty of the related levels, overtaking the other
genres which have a higher desired spike ratio. This could be in part caused
by the tempo of the songs. Since Jazz tends to have a much faster rhythm
compared to Classical music, the speed the player will follow in the generated
levels will also be higher. The higher speed is a probable cause for the difference
in experienced difficulty by the users.
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User Score

In Table 5.2 the average scores for each question per level were compiled along-
side Table 5.3 which compared the correlation between pairs of questions. One
of the findings in Table 5.3 is that question 1 contains some of the least strong
correlations to the other questions. Overall, the questions are all positively
correlated. The difference can be found in the degree of that positive correla-
tion. Relative to all the other questions, the only very strong correlation with
question 1 is question 2. Since question 1 asks the user feedback on the fun of
the level and question 2 is concerned with the variation in the level, it can be
inferred that fun and variation are correlated to each other. This is an expected
outcome as a level without much variation would not be enjoyable to play to
most humans. This implies that the notion of fun as presented previously in
this thesis consists partly of a variation component.

Furthermore, questions 3,4,5 and 6 all have strong correlation between each
other. Recall that these questions were formulated around the matching of a
level with some particular aspect of the song. Questions 3 and 4 in particular
ask about matching the rhythm and pitch of the song, these are less abstract
concepts than matching the mood or genre in question 5 and 6 respectively.

The relationship between all these questions can be viewed as a measure of
song similarity. Matching the rhythm and pitch of the notes gives the user a
direct feeling of song similarity as the user experiences jumping on the rhythm
and following the pitch of the song. Together, the rhythm and notes create
a song with a genre and mood. Since genre and mood are a result of the
combination of notes and rhythm, it follows that matching a songs mood or
genre would be correlated to matching the rhythm or pitch of a song.

As these 4 questions are all strongly correlated to each other, it follows that
as a group they determine a big part of the overall user score. This results
in these 4 questions all being strongly correlated to the overall score. This
correlation is less pronounced in question 1 and 2, which as shown before are
correlated to each other and form a different notion of fun.

Critics

Table 5.4 showed the individual critic scores per level and their total scores.
As well as the average and variance for each critic. Combined with Table 5.5
these provide insight into the relationship between critics. In Table 5.4 it can
be observed that the line critic has high variance between the levels relative to
the other critics. A reason for this can be that the notes line extracted from
the songs are difficult to satisfy. For example, the notes line can contain two
subsequent notes that have a large difference in pitch, resulting in a notes line
that has height differences larger than the geometry generator can handle. So
when dealing with many note lines it is possible that some are generally flatter
with less extreme differences in height than others. This results in the flatter
lines being easier to match and thus higher line critic scores being achieved.
Furthermore the table shows that both the component frequency critic and the

56



emptiness critic have little variation and always scores relatively high. The
emptiness critic likely scores relatively high because of the interchangeability
between an empty piece and a platform with spikes on it. Changing a empty
piece to the same spike does not change the height line or the rhythm of the
level, it simply increases the number of filled pieces in the level, thus enabling
the generator to add extra pieces to increase the emptiness critic value while
not causing any other critic to drastically change. For the component frequency
critic on the other hand, this is likely due to the fact that the squared difference
between the actual spike ratio and desired spike ratio is used. Resulting in the
level generator being heavily discouraged to stray away from the desired spike
ratio. This causes the component frequency critic to have a greater pull towards
having an ideal score of 1, relative to the other critics.

More insight can be gathered from Table 5.5. As mentioned before, there are
mostly weak correlations between the critics. The exception to the rule is the
correlation between the variety critic and the component frequency critic. They
share a strong negative correlation of -0.71964. The negative correlation means
that if the variety in level height increases the ratio of spikes decreases, and vice
versa. Once again, since the spike pieces are mostly flat pieces without height
difference between the beginning and end, they counteract the height variation
in the level.

Correlation between Critics and User Scores

Table 5.6 shows the correlations between each critic and each question. Overall
the emptiness critic has the most positive correlations with the questions from
the user survey. However the strongest of these correlations are to questions 3
and 4. Since questions 3 and 4 pertain to the song similarity of the level with
the rhythm and notes of the song, it seems like the less empty a level the more
likely it is to be similar to the song. This does make sense considering that,
with more empty pieces and a lower emptiness critic score, it will be harder
to match pitch and rhythm. This is likely due to the fact that empty pieces
will result in the user not jumping and being less synchronised to the rhythm.
Similarly, for the pitch of a song, using empty pieces makes the level have less
height variation and is thus less likely to be able to match notes that are higher
on the tone ladder. Overall the emptiness critic is positively correlated to the
questions, showing the importance of having non empty levels.

Furthermore, the line critic is generally negatively correlated to each ques-
tion. The strongest negative correlations are found with questions 2,4 and 5.
The negative correlation with question 2 indicates that closely following the
note line of a song comes at the cost of more variation in the level. Similarly,
questions 4 and 5 are related to pitch similarity of the song, and use of spikes in
the song respectively. This is a surprising result considering question 4 basically
asks the user to rate the similarity between the level and the pitch of the notes.
It is possible that some critics counteracted the effect of the line critic since the
notes line can not be sufficiently matched to convey that feeling to the user.

Finally, the jump critic is mostly weakly correlated to the questions, with the
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outlier being question 6. Between the jump critic and question 6 there exists
a strong negative correlation indicating that the more often the player needs
to jump the less difficult a level becomes. This is likely due to two aspects of
the critics. Firstly, the emptiness critic forces the level to contain pieces. This
likely results the user needing to jump over those pieces. However, once the
frequency of jumping is increased to a very high level, the variation in actions
the user needs to take decreases. For example, consider a level that has 10
rhythmic beats in it, and each beat is matched by a jump. The feeling for the
user would be very monotonous and every jump would be at the same interval,
therefore decreasing the difficulty and variation in the level. To counteract this
a desired jump ratio could be introduced similar to the desired spike ratio in
the component frequency critic.

Limitations

Additionally, there are some limitations to consider about this thesis. It was
argued that fun, song similarity and difficulty were good measures of a levels
quality. However, it is possible that there are other facets that can contribute
but were not considered in this thesis. This could result in the user survey not
reflecting the actual quality of a level.

Furthermore, it is possible that the questions posed to the users do not
perfectly reflect the notions of fun, song similarity or difficulty. Each of these
notions have no precise definition by which the levels can be rated, therefore
the subjectivity of the user comes to the forefront. This subjectivity could be
exaggerated by the low response rate to the user survey, as single individuals
have more influence over the overall results compared to a having a much larger
group of respondents than 19.

The levels provided for the users to try were overall very difficult, it was
found that users had a very low completion rate for the levels with very few
exceptions. The lack of completion is a problem because the users ratings are
likely affected by the lack of knowledge of the whole level. This can lead to false
conclusion being drawn about the song similarity or fun of the level as well.
When a level is too difficult, usually it is not very fun to play. Additionally,
another difficulty metric could be introduced. Counting the number of attempts
a user did on a level can give information about levels with very low completion
rate. For example, if there are 2 levels with identical completion rates but the
average attempts on one level is higher than the other. It follows that the level
with more attempts is likely the more difficult one.

Moreover, the fitness function from the genetic algorithm as well as the
critics that make it up are both experimental in nature. The critics aim to
reflect certain desired qualities of a level such as it being non-empty or having
variety across the level. However, it is probable that there are other critics that
could be used to deliver an even more desirable result. The fitness function is a
sum of all the critics together. However, it could be beneficial to give each critic
a certain weight that would reflect its importance in a level. A good candidate
for a smaller weighting is the component frequency critic, which always returned
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a high value with very little variation.
Finally, it may have been difficult for some users to differentiate between cer-

tain questions on the user survey. As it is not guaranteed that the participants
have any musical or video game knowledge at all. Therefore it may be useful to
limit the survey group around a certain type of person whom has knowledge of
games and music, to more accurately reflect the true nature of the levels.
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Chapter 7

Conclusion

This chapter is concerned with reviewing and discussing the problem statement
and research questions as stated in Chapter 1. To reiterate, the problems state-
ment is as follows: “How can musical features be mapped to a level generator
for a 2D Auto-runner game to produce a feasible, novel and fun level?”. The
following research questions were formulated to address the problem statement:

• What set of musical features can feasibly be mapped to facets of a level?

• What aspects of a 2D Auto-runner level can be influenced by these musical
features to provide an adequate level of difficulty, engagement and novelty?

• How well do users feel the levels match the music used to generate them?

• Can the resulting level generator be abstracted to a more general model
for music based 2D Platformers?

What set of musical features can feasibly be mapped to facets of a
level? Chapter 3 provides answers to the first research question. The chosen
musical features were rhythm, notes and genre. Rhythm and notes were chosen
due to their direct connection with a level. Whereas genre was chosen to influ-
ence the amount of spikes the player could encounter in a level.

What aspects of a 2D Auto-runner level can be influenced by these
musical features to provide an adequate level of difficulty, engagement
and novelty? The musical features chosen were connected to several facets of
a level. The rhythm was used to time the jumps of the player, integrating the
auditory experience into the level. This was done by placing the level pieces at
a position corresponding to the rhythm of the song. The notes were used to
construct a height line, representing the desired trajectory of the level. Finally
the genre was integrated to influence the ratio of spikes in a level. Depending
on the genre of the music more or less spikes would be placed. However, statis-
tically verifying the adequacy of these feature integrations has proven difficult.
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Overall, it has not be proven that these features yield an adequate level of diffi-
culty, engagement and novelty. Possibly due to the small sample size of survey
takers.

How well do users feel the levels match the music used to gener-
ate them? The answer to this research question was obtained by processing
the user survey data as shown in Chapter 5. Question 3 and 4 from the user
survey give the clearest answer, as this research question is related to the levels
matching the song used to generate them. The level matching the rhythm of
the song was rated at 4.044 out of 5 on average over all the levels. Furthermore,
the level matching the pitch of the song was rated by the users as 4.006 out of
5. From this, it follows that the users were relatively satisfied with the levels
matching the music. Especially compared to the other aspects of the level that
were questioned in the user survey.

Can the resulting level generator be abstracted to a more general
model for music based 2D Platformers? It is possible to abstract this
system to a more general form. Chapter 1 shows the system as a whole. Using
this template, should give enough guidance to create a similar system for another
game. However for each game, game specific obstacles and physics need to
be added, as well as game specific dynamics such as double jump, dash or
collectables like coins. For this the current system would have to be extended
to include such facets.

7.1 Further Research

This section contains suggestions for possible future work that could be at-
tempted based on this research. These suggestions are divided into a few cate-
gories: changes to the current research for improved results, integration of new
musical features, adaptive difficulty for an improved user experience.

7.1.1 Changes to Current Research

Due to the fact that in many levels the statistical significance was not demon-
strated, a larger sample size of test subjects should be found to participate in
the user survey. Generally the more participants, the more power the resulting
statistics carry. It is likely that, if there is a statistical significance between fun,
song similarity and difficulty, with a larger sample size these differences would
be found. This would simply require more time to perform the user survey until
the desired sample size is obtained. For this thesis, only 19 participants were
gathered. Whereas for the sake of statistical significance, a sample size closer
to, or over 50 would be desirable.

Another possible change to the current form of the system could be the set
of critics used to generate a level. The current set has been partially compiled
by trial and error testing and common sense criteria. However it is likely that

61



there exists other more descriptive critics that yield an overall more desirable
level. Furthermore, the combination of these critics into a fitness function could
also be changed. Different weights could be applied to every critic in the set,
yielding varying sets of generated levels. These sets could then be used in a
large scale user survey to obtain some feedback on the different weightings of
the critics.

7.1.2 Integration of Other Musical Features

To expand the effect music has on the generated game levels, more musical
features could be mapped to aspects of the game. There is a wide array of
musical features that could possibly be used, some examples from [7] include:
melody, chords, loudness, mood or harmony. For each of these features a new
way of mapping it to a level feature needs to be devised. Furthermore each
mapping of a feature needs to be verified by performing another user survey.

7.1.3 Adaptive Difficulty

From the user survey it was inferred that the majority of the users thought the
levels were too difficult for them to play. This is in part due to the nature of
The Impossible Game, which is meant to be a very difficult game. However, this
resulted in little variation in the difficulty scores obtained from the users. Fur-
thermore, this resulted in most of the levels having a very low completion rate,
which leads to incomplete knowledge of these levels being reflected in the user
survey by the participants. In order to solve this problem a form of adaptive
difficulty could be implemented. This could change the level based on the skill
of the current user that is playing. Such a method is proposed in [29], where
a Rank-based Interactive Evolution (RIE) strategy is introduced. This method
creates computational models based on the users play style/preferences. These
models are in turn used in the fitness function of the evolutionary algorithm in
order to optimise towards user specific needs. These user preference model are
built via ranking-based preference learning. This method has been shown to
outperform other state-of-the-art evolution approaches. However, this will re-
quire the participation of many players of different skill levels in the development
process of the level generator.

7.1.4 Generalising to Other 2D Platformers

The scope of this thesis focuses on level generation with the aid of music. How-
ever, 2D Platformer games that are not based on music far outnumber the music
based games. Thus the question naturally arises whether this system can be
generalised to fit other 2D Platformer games. Doing this comes down to replac-
ing the musical features by an alternative which can generate levels of similar
enjoyment.

In particular, the concepts of rhythm, pitch and genre to base the level
generation on can be replaced to work for non music based games. For example,
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the musical rhythm could be replaced by sampling jump times from a Poisson
distribution, leading to generated level with a varied jump rhythm without
directly matching any song.

Moreover the notes line could be replaced by a randomly generated guide
line. This could be achieved by generating points along a level and creating
a Bézier spline from them. Although many different methods for this height
generation could be explored such as a Markov Chain based approach presented
in [30].

Depending on the game, the component frequency critic could be replaced
by any other desired difference between levels. One example of this could be
coin frequency. As many 2D Platformers tend to have collectable coins spread
around their levels, a critic encouraging higher coin amounts in more difficult
level could be formulated. This could add in an additional incentive for the
player to improve their skills as they will be able to collect more coins if they
do.

The critics that are not related to music can be used in other games, these
are the jump critic, emptiness critic and variety critic. These critics simply
encourage the levels to contain more jumps, avoid empty levels and add variety
to avoid flat monotonous levels. These are generally desirable attributes of
2D Platformers that can be adapted to yield interesting results across many
different 2D Platformers. For example, one can set the emptiness rate of the
level to yield the desired results depending on what the level calls for.
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[12] E. Gómez, M. Haro, and P. Herrera, “Music and geography: Content de-
scription of musical audio from different parts of the world,” Jan. 2009,
pp. 753–758.

[13] S. Lippens, J.-P. Martens, and T. De Mulder, “A comparison of human
and automatic musical genre classification,” vol. 4, Jun. 2004, pp. iv–233,
isbn: 0-7803-8484-9. doi: 10.1109/ICASSP.2004.1326806.

[14] K. Seyerlehner, P. Knees, D. Schnitzer, and G. Widmer, “Browsing mu-
sic recommendation networks,” in Proceedings of the 10th International
Society for Music Information Retrieval Conference (ISMIR), Jan. 2009,
pp. 129–134.

[15] P. Desain and L. Windsor, Rhythm perception and production. Swets &
Zeitlinger Publishers, 2000.

[16] D. P. Ellis, “Beat tracking by dynamic programming,” Journal of New
Music Research 36.1, pp. 51–60, 2007.

[17] P. Grosche, M. Müller, and F. Kurth, “Cyclic tempogram - a mid-level
tempo representation for music signals,” IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2010.

[18] M. Mauch and S. Dixon., “Pyin: A fundamental frequency estimator using
probabilistic threshold distributions,” IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2014.
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