
Master Thesis

Utilizing generative adversarial networks for
stable structure generation in a physics-based

simulation.

Frederic Marvin Abraham

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science of Artificial Intelligence
at the Department of Advanced Computing Sciences

of the Maastricht University

Thesis Committee:

Dr. M. Stephenson
Prof. Dr. Mark H.M. Winands

Maastricht University
Faculty of Science and Engineering

Department of Advanced Computing Sciences

November 18, 2022

Contents

1 Introduction 2
1.1 Motivation . 3
1.2 Research Goals . 4

1.2.1 Research Questions . 5
1.3 Science Birds . 5

2 Related Work 8
2.1 History of PCG . 8
2.2 PCGML . 9
2.3 Generative Adversarial Networks . 9

2.3.1 GAN Introduction . 10
2.3.2 Difficulties in GAN Training 11

2.3.2.1 Mode Collapse . 11
2.3.2.2 Vanishing Gradients 13

2.3.3 Development of GANs . 13
2.3.3.1 DCGAN . 14
2.3.3.2 Wasserstein GAN . 15

2.3.4 Applications of GAN . 17
2.4 Videogame level Generation via machine learning 18

2.4.1 General Level generation with GANs 19
2.4.2 Angry Birds Level Generation 21

2.4.2.1 Genetic Algorithm 21
2.4.2.2 Search-based Approach 22
2.4.2.3 VAE-LSTM model 23

3 Concepts 24
3.1 Encodings . 26

3.1.1 Raster Size selection . 26
3.1.2 Visual Encoding . 27

3.1.2.1 Dot Encoding . 27
3.1.2.2 Calculated Encoding 28
3.1.2.3 Block Encoding Comparision 29

Contents Contents

3.1.3 One-Element Encoding . 30
3.1.4 Multilayer Representation . 31

3.2 Decoding . 33
3.2.1 Recursive Rectangle Decoding (RRD) 33

3.2.1.1 Rectangle Detection 34
3.2.1.2 Recursive Block Selection 37

3.2.2 Confidence Decoding (CD) . 40
3.2.2.1 Matrix creation . 40
3.2.2.2 Linear Block Selection 42
3.2.2.3 Parameter . 44

3.3 Model Training . 46

4 Approach 48
4.1 Data Creation . 48

4.1.1 Structure Filter . 50
4.1.2 Structure Merging . 51
4.1.3 Simulation modifications . 52

4.2 Gan Models . 53
4.2.0.1 Simple GANs . 53
4.2.0.2 Convoluiton GANs 55

4.3 Evaluation and Training . 56
4.3.1 Evaluation . 56

4.3.1.1 Encoding Decoding 56
4.3.1.2 Quantitative Evaluation 57

4.3.2 Training . 58
4.4 Testing application . 58

5 Results 61
5.1 GAN training method . 61

5.1.1 Original GAN Training . 62
5.1.2 WGA Training . 63

5.2 Encoding Results . 64
5.2.1 One Element Encoding . 64

5.2.1.1 Single-Layer . 65
5.2.1.2 Multi-Layer . 66

5.2.2 True-One-Hot Encoding . 68
5.2.2.1 Clipping Values . 68
5.2.2.2 True-One-Hot with Air 69

Frederic Abraham ii

Contents Contents

5.2.3 Visual Multilayer Encoding 71
5.2.3.1 Visual Multilayer Without Air Layer 72
5.2.3.2 Visual Multilayer With Air Layer 73

5.3 Quantitative Evalutation Results . 74
5.3.1 Grid Search Results . 74

5.3.1.1 Characteristic Search 75
5.3.1.2 Parameter Compare 77

5.3.2 Quality Search . 81

6 Discussion & Conclusion 85
6.1 Discussion . 85

6.1.1 GAN architectures . 85
6.1.2 Encoding . 86
6.1.3 Decoding . 87

6.2 Conclusion . 88
6.2.1 Research questions answered 89
6.2.2 Future Work . 90

List of Figures 97

List of tables 98

Bibliography 99

A Appendix 105
A.1 Introduction . 105

A.1.1 Sciencebirds . 107
A.2 Resolution table . 108
A.3 Decoding Examples . 109
A.4 Data Creation . 110
A.5 Application . 112
A.6 More Results . 113

A.6.1 Simple GAN . 113
A.6.2 One Element Encoding . 115
A.6.3 Multilayer Visual Encoding without air layer 117

A.7 Quantitative Evalutation Results . 118
A.7.1 Grid Search . 118
A.7.2 Quality Search . 120

Frederic Abraham iii

Declaration of independence

I hereby declare that I have produced the present work independently and by my
own hand, without the unauthorized assistance of others and exclusively using the
sources and aids listed.

The independent and self-contained production assures in lieu of oath:

Maastricht, the November 21, 2022

. .

Signature

Acknowledgements

This thesis was written under the supervision of Dr. M. Stephenson, to whom I
owe a special thanks. His guidance was always an encouragement to improve the
work instead of a criticism of insufficient parts. Without his patience and insights
over many thesis iterations, this work could not have been finished. The source
code that was written for this thesis and more generated examples can be found
on Google Drive through the following link: https://fabraham.dev/master-thesis. I
would like to thank my girlfriend, who emotionally supported me and helped to
work on this thesis, the RWTH, which allowed me to use their High-Performance
Computing cluster, which without I would not have been able to train the various
models to such an extend and lastly my family and friends for their trust and support
throughout the process.

Frederic Abraham v

https://fabraham.dev/master-thesis

Abbreviations

AI Artificial Intelligence

ML Machine Learning

NN Neural Network

CNN Convolutional Neural Network

DL Deep Learning

CV Computer Vision

WS WebSocket

RMSP Root Mean Squared Propagation

EM Earthmover Distance

MLP Multilayer Perceptron

LSTM Long Short-Term Memory

RNN recurrent neural network

VAE Variational Autoencoder

GAN Generative Adversarial Network

CGAN Conditional GAN

WGAN Wasserstein GAN

WGAN-GP Wasserstein GAN with gradient penalty

DCGAN deep convolutional generative adversarial network

MC mode collapse

PCG Procedural Content Generation

PCGML Procedural Content Generation via machine learning

MNIST Modified National Institute of Standards and Technology database

Frederic Abraham vi

Contents Contents

VGLC Video Game Level Corpus

LVE latent variable evolution

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy

LeakyReLU leaky rectified linear units

RRD Recursive Rectangle Decoding

CD Confidence Decoding

Frederic Abraham vii

Abstract

Procedural Content Generation via machine learning (PCGML) us-
ing deep generative models, such as Generative Adversarial Net-
works (GANs), has attracted attention as a technique to automate
level generation. GANs are the construct of two adversarial net-
works, training one another to differentiate between real and gen-
erated and are said to be the most interesting idea in the last ten
years in Machine Learning. (LeCun 2016) Exploring applications of
GANs on various data representations reduces the required transfer
learning cost and can reduce the development cost when used to
generate video game content.

Previous applications of GANs-based level generation are mostly
limited to game domains with tile-based level representations. This
thesis proposes various ways to encode a 2D physics-based real-
valued block structure in combination with their respective decod-
ing algorithms in order to train two distinct GAN-models with the
original training algorithm proposed by Goodfellow et al. (2014)
and state-of-the-art Wasserstein GAN (WGAN) training algorithm
by Arjovsky et al. (2017) to generate stable block structures. The
most suitable combination of data representation and GAN-model
is evaluated by searching the proposed decoding algorithm’s pa-
rameter space. Using the best parameter set, an extensive simula-
tion is done to generate stable structures with specific characteris-
tics.

The main results of this thesis are the encoding and decoding algo-
rithms that work with imperfect generated structure representations
and the gained insight into the relationship between data represen-
tations in combination with GAN models.

Frederic Abraham 1

1 Introduction

Procedural Content Generation (PCG), which describes the creation of content
through algorithmic means, has become increasingly prominent in video game devel-
opment (A. Summerville et al. 2017). The content generated through PCG ranges
in purpose from visual assets to generating the main gameplay loop of a game. In
the same timeframe as conventional PCG was researched, the number of applica-
tions of Machine Learning (ML) to solve a large variety of problems, in particular
with Neural Network (NN) through Deep Learning (DL), received a large amount
of attention (Goodfellow et al. 2016). Consequently, ML has been used in content
generation under the name of Procedural Content Generation via machine learn-
ing (PCGML).

While PCGML gained more attention in the research community, the latest impres-
sive achievements in the task of text-conditional image synthesis by the DALL-E 2
model (Ramesh et al. 2022), (Examples attached in Figure A.1) resulted in substan-
tial media attention when it comes to generative machine learning models. Some
went so far as to worry about the existence of creative careers when a generated
artwork (Figure A.2) won first place at the Colorado State Fair’s fine arts competi-
tion1.

Even so, while the latest advancements in art generation with Artificial Intelligence
(AI) use the same ML models as in PCGML, the requirements of the generated
content have higher standards in order to be used in a video game. The PCGML
models are usually trained on existing video game content (Liu et al. 2020) in an
unsupervised manner, trying to match specific characteristics of the existing content.
However, the famous DALL-E 2 model and most approaches that utilize AI use
supervised learning techniques, which means they rely on the existence of labelled
data. For example, the training of DALL-E 2 used approximately 650 million labelled
images (Ramesh et al. 2022). One major difficulty in using unsupervised PCGML
is that gathering such a large amount of labelled data is an expensive task, and

1 Colorado State Fair’s fine arts competition
(https://coloradostatefair.com/competitions/general-entry-fine-arts/)

Frederic Abraham 2

https://coloradostatefair.com/competitions/general-entry-fine-arts/
https://coloradostatefair.com/competitions/general-entry-fine-arts/

1 Introduction 1.1 Motivation

unsupervised training is a relatively underexplored research area (Jabbar et al. 2020)
compared to supervised approaches.

Different types of ML algorithms have been used to generate content. Forbes2 states
that one of the most promising unsupervised ML models are Generative Adversarial
Networks (GANs) which is supported by the scientific community when compar-
ing the amount of published research on Google Scholar that is related to GANs3.
GANs are the construct of two adversarial networks, which play a min-max game
of one network that generates new content and a second that discriminates the gen-
erated content to differentiate between real and generated (Goodfellow et al. 2014).
The generated content can use almost any underlying data structure; therefore, the
two networks can be of various architectures depending on the data structure. Due
to the simplicity of having two NN train one another, many advancements can be
made across many different aspects of Generative Adversarial Network (GAN). The
architecture of each network, the controllability, the training process, scaling, adap-
tation and application in different domains are a few research directions that can be
investigated.

The adaptation of GANs in video game content generation is less researched due to
the usually high unreliability of the generated content. While GANs have promising
capabilities, they were previously only used in discrete domains, for example, tile-
based games such as Super Mario with no physical constraints (Volz et al. 2018)
and grid-like positioning of blocks. This thesis investigates the suitability of GANs
to generate stable block structures, which are made of several rectangular blocks, in
the domain of a 2D physics-based simulation.

1.1 Motivation

There are two main motivations for exploring content generator neural networks in
new and difficult domains. The first is of monetary nature, as a significant portion of
the budget in video games is spent to create media used in every aspect of a game.
The development of better generators able to aid content creators will improve
their output and consequently reduce the cost of video game development Amato
(2017).

The second motivation for researching GANs is their adaptability for new tasks and

2 The Next Generation Of Artificial Intelligence
(https://www.forbes.com/sites/robtoews/2020/10/29/the-next-generation-of-artificial-intelligence-part-2/?sh=11886e807a30)

3 By searching "generative adversarial network" in Google Scholar: 50.400 in 2022, 42.200 in 2021,
39.700 in 2020, 25.000 in 2019

Frederic Abraham 3

https://www.forbes.com/sites/robtoews/2020/10/29/the-next-generation-of-artificial-intelligence-part-2/?sh=11886e807a30
https://www.forbes.com/sites/robtoews/2020/10/29/the-next-generation-of-artificial-intelligence-part-2/?sh=11886e807a30

1 Introduction 1.2 Research Goals

domains by changing the kind of data structures and networks used. The fact that
they are unsupervised learning methods that do not require the laborious task of
labelling data. The range and variety where GANs are already applied in general
and in particular in video game content generation, such as textures, terrain, faces
and, to some extent, levels, motivates the research to reduce the required transfer
work required.

The domain mentioned above with the physical constraint differentiates itself from
the usual application environment of GANs. Therefore, exploring new domains re-
duces the transfer work required in applications relying on a similar data structure or
having similar external constraints. For example, the 2D physics-based real-valued
block simulation could be extendible into the third dimension or more complex
shapes.

Lastly, game-playing agents that require a lot of training variety can also benefit from
having a good content generator. A GAN that can produce solvable and challenging
levels could help train the AI to better adapt to a higher variety of challenges. At
the same time, an improved AI could enhance the level generator in an adversarial
manner with better validation capabilities.

1.2 Research Goals

In this thesis, in the related work chapter, an overview of how GANs function, ex-
plained with their initial training process, their difficulties and how the state-of-the-
art training algorithms work and circumvent previous problems, is given. Followed
by their application in content generation and the algorithm that generate structures
in the same science birds domain with different approaches.

The main contribution of this thesis is the exploration of different structure encod-
ings that are able to capture the real-valued domain and investigate their capabilities
to function as the basis for training GANs. In order to recreate structures from the
generated structure representation, two decoding algorithms have been developed
with both their advantages and disadvantages.

In total, 11 GAN networks have been trained on various datasets with the goal
of exploring the different characteristics of the used GAN architectures, training
methods, structure representations and decoding methods. To evaluate produced
structures, the open-source science bird implementation is extended to allow for fast
structure evaluation and data collection. Also, an application was implemented to
interact with various aspects of the thesis.

Frederic Abraham 4

1 Introduction 1.3 Science Birds

1.2.1 Research Questions

The resulting research questions are as follows:

• In the domain of a 2D physics-based real-valued block simulation, how can a
structure be encoded into a data representation capable of being used in the
training process of a GAN?

• Given the encoding of a structure, how can it be decoded into a usable structure
representation?

• What GAN architectures, training algorithms, encoding and decoding param-
eter compositions are usable for training and generating stable structures?

• Are GANs suitable for generating stable structures in a 2D physics-based block
domain?

1.3 Science Birds

The physics-based simulation, which is the subject of this thesis, is represented
in the domain of physics-based puzzle games similar to the popular game Angry
Birds.

Figure 1.1: An example structure from angry birds.4

A level of Angry Birds consists of one or more 2D structures built out of various
blocks in which pigs are placed. An example structure is given in figure 1.1. The
player’s objective is to shoot birds with a slingshot at these structures in order to
kill the pigs by utilizing either the instability of the structure or by aiming at the
pigs directly.
4 Source of the structure image.

https://www.spieleratgeber-nrw.de/Angry-Birds.3278.de.1.html

Frederic Abraham 5

https://www.spieleratgeber-nrw.de/Angry-Birds.3278.de.1.html
https://www.spieleratgeber-nrw.de/Angry-Birds.3278.de.1.html

1 Introduction 1.3 Science Birds

Irregular BlocksRegular Blocks

1
2
3
4

8765

9 10

1211

Figure 1.2: The available blocks in Science Birds are separated into regular and
irregular blocks.

Figure 1.2 shows different available blocks, the used names throughout the thesis are
listed in Table A.1. The blocks come in 3 different materials, ice, wood and stone,
each with higher durability than the previous one. Irregular blocks are usually not
part of the structural integrity of the structure and are usually used in a decorative
manner. As the focus of this thesis is stable structure generation, the irregular blocks
are not considered in this thesis.

<?xml version="1.0" ?>
<Level width="2">

<Camera x="0" y="2" minWidth="20" maxWidth="30"/>
<Birds>

<Bird type="BirdRed"/>
<Bird type="BirdRed"/>
<Bird type="BirdRed"/>

</Birds>
<Slingshot x="-8" y="-2.5"/>
<GameObjects>

<Platform type="Platform" material="" x="-5.69" y="-3.19" rotation="0.0"/>
<Platform type="Platform" material="" x="-5.07" y="-3.19" rotation="0.0"/>
<Block type="RectTiny" material="wood" x="-4.87" y="-2.665" rotation="90.0"/>
<Platform type="Platform" material="" x="-4.45" y="-3.19" rotation="0.0"/>
<Platform type="Platform" material="" x="-3.83" y="-3.19" rotation="0.0"/>
<Block type="RectTiny" material="stone" x="-4.14" y="-2.665" rotation="90.0"/>
<Block type="RectMedium" material="stone" x="-4.14" y="-2.34" rotation="0.0"/>
<Platform type="Platform" material="" x="-3.21" y="-3.19" rotation="0.0"/>
<Block type="RectTiny" material="stone" x="-3.41" y="-2.665" rotation="90.0"/>
<Platform type="Platform" material="" x="-2.59" y="-3.19" rotation="0.0"/>

</GameObjects>
</Level>

Listing 1.1: XML - Level description

An example XML level description is given in listing 1.1. The level is described
by what birds are used, the slingshot position, and a list of game objects. A game
object, classified by the type, is either one of the aforementioned blocks or a platform,
which is an indestructible object not affected by physics or a block of TNT. A game
object is further defined by its real-valued x and y coordinates, its rotation, and, if
applicable, the material.

Frederic Abraham 6

1 Introduction 1.3 Science Birds

Procedural level generation research in this game domain uses the Science Birds
game5 (Ferreira and Toledo 2014), a clone of Angry birds developed in Unity that
provides an interface for remote AI execution. The procedural level generation field
in this game domain is active, and a level generation competition is held yearly
(Stephenson et al. 2019).

The science bird domain has two main difficulties when developing a level genera-
tor. Firstly the high degree of freedom in the level/structure design. The real-valued
positioning of each block allows for a large number of varied structure designs. Com-
bined with the second challenge, that a small error in the placement of each block
can lead to the collapse of the structure immediately after the game start, which
makes the level unplayable. The generator needs to consider if blocks overlap one
another, which would result in unpredictable behaviour by the physics engine, or
if they are placed sufficiently close in order to not cause an impact when simu-
lated.

5 Science Birds Source Code: https://github.com/lucasnfe/science-birds

Frederic Abraham 7

https://github.com/lucasnfe/science-birds

2 Related Work

This chapter reviews related work in the field of PCG with a focus on the ML ap-
proaches. Starting with a brief introduction on the origin of PCG and an overview
of PCGML techniques. The main focus of this master thesis is to utilize generative
adversarial networks to generate structures in a real-valued block world. The fol-
lowing section gives an insight into the main concepts of GANs, their development,
difficulties and different advancements to combat these problems. Closing this chap-
ter with examples of PCGML using GANs followed by an overview of the previous
PCG for angry birds.

2.1 History of PCG

PCG refers to the creation of content automatically through algorithmic means
(Yannakakis and Togelius 2011). Over the years, the field of PCG became populated
with various algorithms aiming to achieve different goals. The original problem PCG
addressed was memory limitations for storing larger video game levels on computers
in the 1980s (Fontaine et al. 2020). One of the earliest games that incorporated PCG
to generate adventures and levels was “Beneath Apple Manor” in 1978 (Doull 2015)
followed by the more famous and highly influential game Rogue (Doull 2016) in 1980,
which is the progenitor of following games in the “Rouguelike” category. The original
dungeon generation algorithm created a level by generating several rooms connected
with corridors in a 2d grid-based environment. When modern game development
began focusing more on realistic graphics in the 1990s, many procedural modelling
algorithms were developed for generating environmental aspects, such as textures,
plants and terrain. (Smelik et al. 2014).

The master thesis focuses on the more recent area of PCGML, which utilises the
latest advancements in ML to generate new content. PCGML is defined as the gen-
eration of game content using machine learning models trained on existing content
(A. Summerville et al. 2017).

Frederic Abraham 8

2 Related Work 2.2 PCGML

2.2 PCGML

The application of ML, in particular DL, led to increased capabilities and application
methods to learn from a large amount of data and has won numerous contests in
pattern recognition. (Schmidhuber 2015) The major difficulty with many of the
problems DL excels at is a vast number of features with different levels of importance.
Goodfellow et al. (2016) describe DL as the solution to the central problem in
representation learning by introducing representations expressed in terms of other,
simpler representations.

In PCGML, various models are used for content generation. A. Summerville et
al. (2017) surveyed machine learning methods for content generation such as long
short-term memory (LSTM) networks, autoencoders, deep learning and genera-
tive adversarial networks. The other category of content generation methods falls
into the search-based methods, for example, evolutionary algorithms, and solver-
based methods, which try to maximize an objective while preserving a specific con-
straint, and constructive methods using grammars. Other machine learning mod-
els used in PCG that are not based on neural networks are Markov-Models, one-
dimensional n-gram models, clustering, and matrix factorization (A. Summerville
et al. 2017).

2.3 Generative Adversarial Networks

The chief AI Scientist at Facebook LeCun (2016) described Generative Adversar-
ial Network (GAN) as “the most interesting idea in the last ten years in Machine
Learning”. The central concept of GANs is the adversarial idea, which, from a game-
theoretical point of view, is to define the task as a game between two opposing
systems trained in an adversarial manner to reach a zero-sum Nash equilibrium
(Moghadam et al. 2021). It has been successfully applied in many areas, such as
machine learning, artificial intelligence, computer vision and natural language pro-
cessing. (Gui et al. 2021) Another public example of how an adversarial system
exceeded previous achievements is when the AlphaGo model (Silver et al. 2016) de-
feated the top human Go player. Parts of AplhaGo utilized two networks that were
trained by playing against themselves.

Frederic Abraham 9

2 Related Work 2.3 Generative Adversarial Networks

2.3.1 GAN Introduction

Goodfellow et al. (2014) introduced generative adversarial networks as a framework
for estimating generative models via an adversarial process in which two models are
trained simultaneously. He described GANs as frameworks consisting of two mod-
els, which can be any kind of network, instead of one coherent model architecture.
This change is done in recent literature and can be referred to interchangeably. Fig-
ure 2.1 visualizes the general structure of a GAN framework consisting of the two
models.

Real Dataset

Generate
fake

examples

Generator

Discriminator
or

Critic

Discriminator

Loss

Generator

Loss

Evaluation
Real / Fake

Update Discriminator Weights

Update Generator Weights

Noise variable

Fake

Data Space

Figure 2.1: Overview of a generative adversarial network

The two models mentioned above are the generator which tries to capture the data
distribution of the training data, and the discriminative model, also called the critic,
which tries to differentiate between samples drawn from the training data and sam-
ples generated by the generator. The generator is trained to maximize the probability
that the discriminator mistakes its generated example as drawn from the actual dis-
tribution. The GAN can be trained through backpropagation if the generator and
the discriminator are Multilayer Perceptron (MLP).

Goodfellow et al. (2014) describe the training process, visualized in Figure 2.1, as a
two-player minimax game in the following steps:

1. Create a noise variable pz(Z) which functions as input to the generator.

2. The generator, which tries to learn the distribution pg over the data x, is de-
fined as a mapping from the random input space into the data space G(Z; θg).
G is a differentiable function due to being an MLP with parameters θg.

Frederic Abraham 10

2 Related Work 2.3 Generative Adversarial Networks

3. The discriminator is defined as a function D(x; θd) that maps from the data
space to a single scaler. The scaler D(x) is defined as the probability of x being
drawn from the real data distribution.

4. The discriminator is trained to classify real and fake data to maximize the
probability of assigning the correct label. The error in assigned labels is the
loss used to update the weights of the discriminator.

5. The generator tries to minimize log (1−D(G(z)). In other words, given the
noise variable z, the generated example shall receive a probability close to
1 from the real dataset. The loss for the generator is the amount of images
correctly identified as generated, which is used to update its weights.

The description of the training process accumulates into the aforementioned two-
player minimax game with the value function V (G, D):

min
G

max
D

V (D, g) = Ex∈pdata(x)[logD(x)] + Ez∈pz(z)[log 1−D(G(z))] (2.1)

Solving this problem and “finding the Nash equilibrium is a very difficult prob-
lem. [As the] [...] cost functions are non-convex, the parameters are contin-
uous, and the parameter space is extremely high-dimensional.” (Salimans et
al. 2016)

2.3.2 Difficulties in GAN Training

Training a GAN has been repeatedly stated to be a challenging problem. (Arjovsky
and Bottou 2017; Salimans et al. 2016; Gui et al. 2021) The main challenges that can
be observed when training a GAN are mode collapse (Goodfellow et al. 2014), the dis-
criminator loss converging quickly to zero and therefore does not provide a sufficient
update to the generator (Arjovsky and Bottou 2017) and difficulties in making the
generator and discriminator converge. (Radford et al. 2015)

2.3.2.1 Mode Collapse

The primary reason for failure of GANs is the mode collapse (MC) problem, in
which the generator collapses to a parameter setting in which it learns a mapping of
different input z values to the same output point. (Salimans et al. 2016; Goodfellow
2017) Jabbar et al. (2020) describe it as the most crucial topic of GAN training.
MC comes in different levels of severity and is therefore classified into partial or
complete mode collapse.

Frederic Abraham 11

2 Related Work 2.3 Generative Adversarial Networks

Text

1

2

3

4

5

6

7

8

0

9

Figure 2.2: A partial mode collapse of a GAN trained on the MNIST1dataset, which
is a hand drawing dataset of numbers. Visualized on the right is a two-
dimensional projection of the input latent space Z, which shows that a
majority of the latent space vectors are mapped to the drawing of a one.
The graphic is created by Tran et al. (2018).

A partial mode collapse, visualized in Figure 2.2, is the case where some diversity
remains in the generator. In contrast, the complete mode collapse only produces a
single data point. It can be observed that when a mode collapse is about to occur
that all gradients of the generator point in similar directions. (Salimans et al. 2016)
In the original GAN architecture, no mechanism enforces diversity, and there exists
no coordination between the gradients of each example of the discriminator. Thus the
discriminator calculates the gradients for each example independently and points the
generator to the point that it believes to be the most probable. After the generator
collapses and produces only a single or few distinct outputs, the gradient descent
algorithm used to train the models can not separate the outputs resulting in a GAN
that can not converge to a correct distribution.

The solution to the mode collapse problem has many different approaches. The
first simple solution is to associate examples with each other, typically achieved
through batch normalization (Ioffe and Szegedy 2015) as firstly done in the deep
convolutional generative adversarial network (DCGAN) (Radford et al. 2015), which
is further discussed in section 2.3.3.1. Batch normalization modifies the input for
each layer to have zero mean and unit variance over the whole batch. Radford
et al. (2015) describe batch normalization as critical for getting deep generators
to begin to learn while preventing mode collapse. This approach is criticized by
Gulrajani et al. (2017) to change the problem of the discriminator’s training. Instead
of learning a mapping from a single input to a single output, it is changed to a
mapping from an entire batch of inputs to a batch of outputs, reducing the quality
of the outputs. They recommend layer normalization (Ba et al. 2016) as a drop-in
replacement for batch normalization.

1 The MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)

Frederic Abraham 12

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

2 Related Work 2.3 Generative Adversarial Networks

Another approach is to modify the loss function to encourage the generator to be
more diverse. This is done in various ways, with the most adopted one being the
Wasserstein Gan discussed in 2.3.3.2. A more direct approach by Tran et al. (2018)
is to introduce a latent-data distance constraint which tries to enforce compatibil-
ity between the latent sample distances and the corresponding data sample dis-
tances.

2.3.2.2 Vanishing Gradients

The vanishing gradient problem is a general deep learning problem of NN (Basodi et
al. 2020). It results in the problem that the generator does not improve in producing
good-quality images.

The main issue is that the gradients required to train the generator become vanish-
ingly small in the initial layers of the network. Combined with the problem that min-
imizing log (1−D(G(z)) results in the issue that if the discriminator is too confident
in its prediction, the probability becomes D(G(Z)) ≈ 0 and the gradient diverges
to zero. Goodfellow et al. (2014) proposed to maximize D(G(Z)) instead, which
provides stronger gradients in the early stages of the learning process but introduces
a larger variance of gradience, making the training less stable.

Another common practice, even in the original training algorithm, is training
the discriminator more than the generator. The goal is to keep the discrimina-
tor close to its optimum for the intermediate generator state. Arjovsky and Bot-
tou (2017) argue that the gradients become more reliable with a more trained
discriminator. This becomes even more important in architectures that use the
Wasserstein distance due to its stronger gradients, which will be discussed in sec-
tion 2.3.3.2.

2.3.3 Development of GANs

The described difficulties in training GANs and their promising capabilities in gen-
erating a variety of content led to a variety of research into improving the stability
in training, measurability and overall results.

Saxena and Cao (2020) categorize the different approaches for improving a GAN in
three distinct ways.

1. Re-engineering the overall network architectures.

2. Proposing a new objective function for the generator and or the discriminator.

Frederic Abraham 13

2 Related Work 2.3 Generative Adversarial Networks

3. Developing new optimization algorithms for the generator and or discrimina-
tor.

Plenty of other optimizations which are non-GAN specific, such as a model en-
semble of multiple generators (Tao et al. 2018) or training multiple discrimina-
tors (Y. Wang et al. 2016) have been investigated but are not subject of this the-
sis.

2.3.3.1 DCGAN

The aforementioned deep convolutional generative adversarial network (DCGAN)
falls into the first category of reengineering the architecture of the generator and
discriminator. It is the first Convolutional Neural Network (CNN) based GAN archi-
tecture that employs a continuous training process and has been shown to perform
well in image generation tasks. (Jabbar et al. 2020)

Project and reshape Conv 1
Conv 2 Conv 3

Conv 4

Figure 2.3: The architecture of a DCGAN generator that creates a 64x64 image.
Visualization of the network is created by Radford et al. (2015)

Figure 2.3 visualizes the architecture of the generator developed by Radford et
al. (2015). Compared to the original GAN architecture, which only used fully con-
nected layers and pooling layers, the proposed architecture uses transposed convolu-
tions to create the required size. No fully connected or pooling layers are used. The
use of fractionally-strided convolutional layers, also called transposed convolution,
improved the stability of GAN training significantly. (Jabbar et al. 2020) Similarly,
the discriminator uses only convolutional layers to derive its prediction from a given
image.

The generator uses the ReLU (Nair and Hinton 2010) activation function between
the layers and a Tanh function at the output layer, similar to the original imple-
mentation by Goodfellow et al. (2014). In contrast, the discriminator does not use
the Maxout function but a leaky ReLu (Xu et al. 2015).

Frederic Abraham 14

2 Related Work 2.3 Generative Adversarial Networks

2.3.3.2 Wasserstein GAN

The Wasserstein GAN (WGAN) developed by Arjovsky et al. (2017) is an improve-
ment of the training of GANs that falls into the second category of proposing a new
objective function. The objective function they adapt for training the Wasserstein
GAN is the Earthmover Distance (EM) 2 or Wasserstein-1 distance.
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.
htm

The original discriminator objective function determines whether an example is
drawn from the fake or real distribution and designates a value between 0 and
1, respectively. As Goodfellow et al. (2014) pointed out, this leads to vanishing gra-
dients if the two distributions do not overlap, resulting in slow generator training.
The EM distance is the distance between two probability distributions over a region
D. It is intuitively described by visualizing both distributions as different ways to
pile an amount of earth with the task of transforming one pile into the other. The
EM describes the minimal cost of transformation, where the cost is the amount of
earth times the distance by which it moved.

1.0

0.8

0.6

0.4

0.2

0.0

 -0.2

 -0.4
 -8 -6 -4 -2 0 2 6 4 8

 Linear gradiants
in a WGAN Vanishing gradients in

regular GAN

Density of real
Density of fake
GAN Disciminator
WGAN Critic

Figure 2.4: A artificial example in which two optimal trained discriminators/critics,
trained to differentiate two Gaussians, calculate gradients. The graphic
is created by Arjovsky et al. (2017)

Figure 2.4 gives insight into how the gradients behave for a WGAN-Critic using the
Wasserstein-Distance / earth mover distance and the original GAN discriminator.
The GAN discriminator’s gradients saturate and result in vanishing gradients, while
the WGAN critic provides clean gradients on all parts of the space (Arjovsky et
al. 2017).
2 Formal definition: The Earth Mover’s Distance

Frederic Abraham 15

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm

2 Related Work 2.3 Generative Adversarial Networks

Discriminator/Critic Generator

GAN ∇Θd

1
m

m∑
i=1

[log(D(x(i))) + log(1−D(G(z(i))))] ∇Θg

1
m

m∑
i=1

log(D(G(z(i))))

WGAN ∇w
1
m

m∑
i=1

[f(x(i)))− f(G(z(i)))] ∇Θ
1
m

m∑
i=1

f(G(z(i))))

Table 2.1: Comparing the gradients for discriminator/critic and generator for the
original GAN and Wasserstein GAN (Hui 2018).

Incorporating the Wasserstein Distance into the gan training results in the gradients
shown in table 2.1. When applying the Wasserstein Distance, the WGAN critic f

becomes a function that has to be a 1-Lipschitz function, which is a strong form
of uniform continuity. In other words, a Lipschitz continuous function is limited in
how fast it can change, which results in stable gradients that point towards the right
direction, even far away from the actual distribution.

The constraint is enforced by clipping the weights of the critic f by an extra hy-
perparameter c. The WGAN algorithm describes the weight update of the critic by
using the Root Mean Squared Propagation (RMSP) (Hinton et al., n.d.) update and
weight clipping:

w ← w + α ·RMSProp(w, gw)
w ← clip(w,−c, c)

Arjovsky et al. (2017) show multiple benefits over the original GAN training when
using the Wasserstein optimisation function.

• Does not require a careful balance between the discriminator and generator.

• Less restricted in the architecture design of the NN.

• Mode collapse becomes less likely because of more stable gradients.

• The EM Distance correlates well with the sample quality.

While noting the progress that WGAN makes toward stable training of GANs,
Gulrajani et al. (2017) criticise the use of weight clipping to enforce the Lipschitz
constraint on the critic. They claim this could lead to low-quality samples or that
the training is less likely to converge. They propose an alternative to weight clipping
by penalising the norm of the critic’s gradient with respect to its input. They enforce

Frederic Abraham 16

2 Related Work 2.3 Generative Adversarial Networks

the 1-Lipschitz constraint by penalising the gradient by adding the penalty given in
equation 2.2.

gp = λEx̂∼Px̂
[(∥∇x̂D(x̂)∥2 − 1)2] (2.2)

The variable x̂ is an interpolation between a generated sample and a sample drawn
from the real distribution. Given that interpolation, the norm of the gradient of
the critic at the interpolated point should be 1. They prove that an optimal critic
contains interpolations with a gradient of 1.

They claim that the proposed Wasserstein GAN with gradient penalty (WGAN-GP)
performs better than the standard WGAN with higher quality samples and more
stable training through a wider variety of architectures with less hyperparameter
tuning. A downside to this approach is that calculating the interpolations for each
training step is an expensive operation.

2.3.4 Applications of GAN

GANs have been applied in various task besides PCGML which is further described
in section 2.4.1. As two neural networks are trained, one to differentiate real from
fake data and one to generate new data, they both can be used in their respec-
tive tasks. Generally, what can be achieved with a GANs depends on what kind
of data that can be encoded. Different data structures have been investigated to
be used with GANs: H. Wang et al. (2017) developed the GraphGAN, used to
learn graph representation and Yu et al. (2016) developed the SeqGan for token
sequences.

For the various applications of the GANs generator, the image synthesis task is
the most well-studied one. (Huang et al. 2018) Figure 2.5 shows the progress
of GAN capabilities from the year 2014 to 2018 in the task of face synthe-
sis.

Another well-studied application of GANs is anomaly detection due to their ability
to learn data unsupervised. Outlier detection models are typically trained on large
amounts of annotated data (Schlegl et al. 2017), and the effort of labelling this data,
which usually requires expert knowledge, limits the applicability of such approaches.
The discriminator is able to detect outliers in image data as done in the AnoGan
architecture developed by Schlegl et al. (2017). It is trained on healthy medical
images and is able to detect imaging markers relevant to disease progression. Xia
et al. (2020) used GANs in their LogGAN model to detect anomalies in sequential
log data.

Frederic Abraham 17

2 Related Work 2.4 Videogame level Generation via machine learning

2014 2015 2016 2017 2018

Figure 2.5: Different GAN architectures in the task of face synthesis.
From left to right: (1) The Original GAN Paper (Goodfellow et al. 2014).
(2) First use of Deep Convolution Networks (Radford et al. 2015). (3)
Using a joint distribution training task (Liu and Tuzel 2016). (4) Pro-
gressive training of Generator and Discriminator (Karras et al. 2017). (5)
Incorporates style transfer architecture in generator (Karras et al. 2018).

2.4 Videogame level Generation via machine learning

With the basis of machine learning and GANs covered in section 2.3, this section
reviews the application in the context of Procedural Content Generation via ma-
chine learning (PCGML), primarily video game level generation. PCGML can be
separated into the two fields of data representation and training method. A. Sum-
merville et al. (2017) organize PCGML in their taxonomy of methods techniques
into these two categories.

The underlying data representation used defines how the data is encoded in order
to be used in training and the generation process. In their taxonomy, they consider
three distinct data representations: (1) Sequences, (2) Grids, (3) and Graphs. One
piece of information is not constrained to only one representation but can be encoded
in many different ways. For example, the level of a platformer has been defined in all
three representations (Summerville and Mateas 2016; A. Summerville et al. 2017).
The Video Game Level Corpus (VGLC) (A. J. Summerville et al. 2016) contains
428 levels from 12 games in all three representations.

The training methods reviewed in A. Summerville et al. (2017) taxonomy are Back
Propagation, Evolution, Frequency Counting, Expectation Maximization, and Ma-
trix Factorization. The main focus of this section is level generation through GANs,
which primarily use NN in their underlying architecture and are mainly trained
through backpropagation.

Frederic Abraham 18

2 Related Work 2.4 Videogame level Generation via machine learning

2.4.1 General Level generation with GANs

Transferring the knowledge of image synthesis into level generation is not a trivial
task. Primarily finding an encoding of the level that can be decoded even if the
outcome of the GAN is noisy or imperfect is difficult.

One of the first to apply GANs in the context of level generation is Giacomello
et al. (2018) in their work to generate DOOM levels based on human-designed
content.

(a) FloorMap (b) HeightMap (c) ThingsMap (d) WallMap

Figure 2.6: The layers required for recreating a doom level. The level representations
are generated by Giacomello et al. (2018).

They extract six images for each level representing the game level file to train the
GAN. Figure 2.6 visualizes the output of a trained GAN representing the following
data:

• A floor map represents the space a player can walk on or not walk on.

• A height map that defines the vertical height location of the floor.

• The things map includes one-pixel representations of locations where items are
placed. Different items are represented through different values.

• A wall map visualizes the locations of walls through one-pixel borders.

Frederic Abraham 19

2 Related Work 2.4 Videogame level Generation via machine learning

They describe their preliminary results as a good starting point for researching
the viability of GANs compared to classical PCG. The generated levels contained
DOOM typical features and are supposedly interesting to explore, even though they
could not decode the generated data into levels, and therefore the playability was
not tested.

Volz et al. (2018) utilized GANs to generate complete Mario levels. They use
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) to search the latent
space of the GANs generator to influence the outcome based on different metrics
over the generated levels. The first approach is to optimize different block distri-
butions. For example, fewer stone blocks could lead to an air level with greater
difficulty. In their second approach, they utilize a Mario AI (Togelius et al. 2013)
that can produce playthrough data of their generated levels. They focused on op-
timizing toward playable levels with a scalable difficulty. The idea of using latent
variable evolution (LVE) to explore the generator’s latent space was firstly intro-
duced by Bontrager et al. (2017) in their works to match generated fingerprints to
as many real fingerprints as possible. Evolving the latent space to gain control over
the output stands in contrast to Conditional GANs (CGANs) (Mirza and Osindero
2014), which utilize a condition vector combined with the noise vector as input to
the generator to produce a controllable output.

Tile type Symbol Identity Visualization
Solid/Ground X 0

Breakable S 1
Empty (passable) - 2

Full question block ? 3
Empty question block Q 4

Enemy E 5
Top-left pipe < 6

Top-right pipe > 7
Left pipe [8

Right pipe] 9

Level representation in 1 - Hot Encoding
32

32

10

111
11

111
1

Stone floor

111
1

Floating platform
on second layer

Figure 2.7: Process of transforming a Mario level into a One-Hot, multi-dimensional
level representation used by MarioGAN. The 32×32×10 matrix, on the
bottom right, is filled with zeros except x, y coordinate on the layers of
the blocks visible in the selected window.

Figure 2.7 visualizes how a Mario level is transformed into a representation that

Frederic Abraham 20

2 Related Work 2.4 Videogame level Generation via machine learning

can be put into the discriminator. The ASCII representation provided by the VGLC
(A. J. Summerville et al. 2016) is mapped into the identity matrix, which is put into
a one-hot encoded matrix. In other words, each x, y coordinate becomes a vector
of size 10 with a one at the location of the visible block. The advantage of this
number-based representation is that the generated image can be decoded into a
playable level through an argmax operation over the layers of the one hot encoded
matrix.

They conclude that GANs can capture high-level structures of the training level
even though they sometimes produce broken elements such as incomplete pipes and
structures. Their main conclusion is that LVE is a promising approach for fast level
generation that can be adapted to other game genres.

2.4.2 Angry Birds Level Generation

Machine learning-based level generation using neural networks and backpropaga-
tion for Angry Birds has only recently been investigated by Tanabe et al. (2021).
Conventional level generation approaches for Angry Birds are designed using domain
knowledge, and search-based approaches (Tanabe et al. 2021).

2.4.2.1 Genetic Algorithm

Ferreira and Toledo (2014) used a genetic algorithm to find a stable combination of
blocks and predefined structures.

7

9

8

1

17

21

22

18

17

22

19

183148 0

Column 2Column 1 Column 3

Distances:

Elements:

Figure 2.8: The level encoding defined by Ferreira and Toledo (2014) used blocks and
predefined structures in arrays of columns. For example, the block ID 22
represents a pig. Visualization made by Ferreira and Toledo (2014).

Figure 2.8 shows how a level with three structures is represented as an individual
used in the genetic algorithm. The initial population is generated using a stochastic

Frederic Abraham 21

2 Related Work 2.4 Videogame level Generation via machine learning

selection that defines the likelihood of a block appearing at the bottom, middle
or top. Crossover operators are used only between whole columns, and mutation
operators change individual blocks.

2.4.2.2 Search-based Approach

The Winning entry for the 2017 and 2018 AIBIRDS level generation competitions3

is the search-based approach by Stephenson and Renz (2017), which can create com-
plex stable structures with various different elements. The proposed level generator
is built upon and improves their previous iterations. (Stephenson and Renz 2016a,
2016b)

Structures generated using the original algorithm are made up of rows, each con-
sisting of a single block type. It operates by recursively adding rows of blocks to
the bottom of the previous row. After the block type of each row is selected, the
previous row is divided into subsets based on the distance of the blocks in the row.
For each subset, the block placement of putting the subsequent blocks in the cen-
tre, at the edge or in both locations is created and checked for validity (overlap
and support are checked). Of all possible valid block placements, one is selected at
random.

8

7 77

8

2 2

3 333

8 8 8

Figure 2.9: A structure generated by Stephenson and Renz (2016a) which shows the
block placements and how the structure can be represented as an acyclic
graph. Visualization by Stephenson and Renz (2016a).

Figure 2.9 shows the three different kinds of block placements in different subsets
incorporated into a generated structure. The pig placement is done by analysing the
structure and searching for free space above the centre or corners of each block. This
algorithm is extended in (Stephenson and Renz 2016b) to include irregular blocks
after the pigs have been placed.

3 https://aibirds.org/other-events/level-generation-competition.html

Frederic Abraham 22

https://aibirds.org/other-events/level-generation-competition.html

2 Related Work 2.4 Videogame level Generation via machine learning

This approach’s main limitation is limiting each row’s block type, which reduces
the variety of possible structures. The last iteration (Stephenson and Renz 2017)
extends the generator to allow multiple block types in one row by swapping blocks
with other block types of the same height.

2.4.2.3 VAE-LSTM model

The aforementioned NN-based approach by Tanabe et al. (2021). uses Variational
Autoencoder (VAE) (Kingma and Welling 2013) in combination with Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber 1997). VAEs are trained on
recreating the input at the output, and LSTMs are a version of recurrent neural net-
works (RNNs) and are usually used in text processing tasks.

Level Matrix

<1 0 0 1 0 0 1>

<0 2 0 2 0 2 0>

<0 3 0 0 4 0 0>

<0 0 0 0 0 0 0>

<0 0 0 0 0 0 0>

<1 0 0 1 0 0 1> <0 0 0 0 0 0 0>

Word Embedding Word Embedding

Encoding

LSTM cell

Encoding

LSTM cell

Linear

Linear
z

Level Matrix

<1 0 0 1 0 0 1>

<0 2 0 2 0 2 0>

<0 3 0 0 4 0 0>

<0 0 0 0 0 0 0>

<0 0 0 0 0 0 0>

<1 0 0 1 0 0 1> <0 0 0 0 0 0 0>

Word Embedding Word Embedding

Encoding

LSTM cell

Encoding

LSTM cell

Figure 2.10: Flowchart of the proposed approach by Tanabe et al. (2021). The chart
is a recreation based on their provided Flowchart.

Figure 2.10 describes how a level is encoded into a level matrix. The level matrix
encodes a level as a data sequence capturing the level as if each block is dropped
individually from the top onto the next block or platform below. The matrix is then
processed as if it were a natural language sentence, with each row representing a
word. The word embedding is put into the VAE-LSTM model with the training goal
of recreating the level. Creating new levels is archived through LVE in between the
autoencoders encoder and decoder.

Frederic Abraham 23

3 Concepts

This chapter addresses the concepts used in the different approaches that form
the structure generation with GANs. An overview of the concepts, and the pro-
cess flow of encoding and decoding with the individual design decisions, is given in
Figure 3.1.

Encoding (3.1)

Visual
Encoding

XML Level
Description

Raster Size

Selection (3.1.1)

Dot Encoding
(3.1.2.1)

Calculated
Encoding (3.1.2.2)

One-Element
Encoding (3.1.3)

Multilayer
Representation

 (3.1.4)

Single Layer

Multilayer
with Air

Multilayer
without Air

True One Hot

Structure
Representation

(3.1.2)

Decoding (3.2)

Uses
One-Element

Encoding

yes

no

Confidence Decoding (3.2.2)

Matrix Creatioon

(3.2.2.1)

Linear Block Selection

(3.2.2.2)

Recursive Rectangle Decoding (3.2.1)

Rectangle Detection
(3.2.1.1)

Recursive Block Selection

(3.2.1.1)

Figure 3.1: Flow chart of the encoding decoding process with all possible design
decisions. The number in each block references the section which explains
the respective subject.

Input to the encoding-decoding process is the XML-level description, as given in
Listing 1.1, which contains the structure and will be encoded into the structure

Frederic Abraham 24

3 Concepts 3 Concepts

representation. The structure representation is required in order to be processed
by the GAN. After the encoding raster size is decided, described in Section 3.1.1,
two different ways to represent a block are possible. The “Visual Encoding”, cov-
ered in Section 3.1.2, encodes the structure as if a picture is taken of the structure
and is further divided into the “Dot Encoding” (3.1.2.1) and “Calculated Encod-
ing” (3.1.2.2). On the other hand, the “One-Element Encoding” inspired by the
Tanabe et al. level encoding represents each block into one single pixel, further de-
scribed in Section 3.1.3. With each block represented in the encoding, there are
multiple ways how they can be split up over multiple layers, further discussed in
Section 3.1.4.

With the structure representation, a decoding algorithm is required to recreate the
XML-level description, covered in Section 3.2. The One-Element encoding does not
require an elaborate decoding algorithm and can be recreated into the XML de-
scription directly. For the visual encodings, two different approaches have been im-
plemented. The “Recursive Rectangle Decoding” (RRD) in Section 3.2.1 and the
“Confidence Decoding” in Section 3.2.2.

Each path from the XML-level description to the structure representation in the
encoding block of Figure 3.1 is a different way a dataset can be created. The
last concept Section 3.3 describes the process of how different GAN architec-
tures can be trained with the different training methods using the respective
datasets.

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Figure 3.2: Original test structure as wireframe coloured by material.

Over the whole concepts chapter, the structure shown in Figure 3.2 is the “test
structure”, used as an example for the different processes. This wireframe drawing
represents the original XML-Description, with no regard for raster size or encoding
method to visualize the original structure’s dimensions as close as possible. The
colours represent the different materials, ice, wood and stone, with the circle repre-
senting a pig.

Frederic Abraham 25

3 Concepts 3.1 Encodings

3.1 Encodings

As previously described in section 2.4, a structure can be encoded in various data
structures, namely as a graph, sequence or grid. Most previous attempts on level
generation with GANs use image synthesis, which is also the most researched task
of GANs. This thesis investigates different grid-based structure representations to
expand on that knowledge. The encoding describes how the level, given as an XML
file 1.1, is parsed into a structure representation.

The different design decisions, visualised in Figure 3.1, have to be made in order to
create the structure representation. Both encodings, the visual and one-element en-
coding, require a rasterization process. The main parameter of this process is the tile
size of the raster. Section 3.1.1 describes the selection process of this parameter. The
following sections describe the two ways a block is represented in the structure rep-
resentation. The visual encoding described in Section 3.1.2 has the decision of what
tiles a block exactly covers, which introduces the problem that a block can be right
on the border of a tile creating uncertainty if the tile should be coloured or not. Two
different ways how this problem is solved are described in Section 3.1.2.1 and Sec-
tion 3.1.2.2. While the One-Element encoding of Section 3.1.3 presents an alternative
solution to how a block can be encoded. As previously explained, the representations
can be split over multiple layers. The different ways to separate the blocks to create
the multilayer representations are discussed in Section 3.1.4.

3.1.1 Raster Size selection

One major challenge in this domain is the real-valued positioning and dimensions
of the game objects. In order to rasterize a structure, the parameter of the grid
dimension has to be chosen. The tradeoff in this selection is that a smaller grid size
better represents the blocks and their positioning but increases the dimensionality
of the final structure representation.

Figure 3.3 visualizes how different grid sizes affect how the structure is encoded. It
can be seen that the smaller grid size, shown in Figure 3.3a, results in a representa-
tion with a larger dimension, but small gaps and imperfect positionings are better
captured. Conversely, a bigger grid size results in a smaller encoded output repre-
sentation where only a few tiles represent a block. This comes with a loss of finer
details and wrongly represented block sizes. Imprecisions in the encoding, where the
same block type gets encoded with different dimensions, become more significant in
the bigger grid size. This can become problematic in the decoding process, where a
distinct block and position have to be chosen.

Frederic Abraham 26

3 Concepts 3.1 Encodings

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Resolution 0.03 (81, 173)

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Resolution 0.07 (34, 74)

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Resolution 0.12 (20, 43)

0 20 40 60 80 100 120 140 160
0

20

40

60

80

0 10 20 30 40 50 60 70
0
5

10
15
20
25
30

0 5 10 15 20 25 30 35 40
0

5

10

15

Different level rasterisation with different grid size

(a) Resolution 0.03 (81, 173)

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Resolution 0.03 (81, 173)

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Resolution 0.07 (34, 74)

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Resolution 0.12 (20, 43)

0 20 40 60 80 100 120 140 160
0

20

40

60

80

0 10 20 30 40 50 60 70
0
5

10
15
20
25
30

0 5 10 15 20 25 30 35 40
0

5

10

15

Different level rasterisation with different grid size

(b) Resolution 0.07 (34, 74)

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Resolution 0.03 (81, 173)

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Resolution 0.07 (34, 74)

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Resolution 0.12 (20, 43)

0 20 40 60 80 100 120 140 160
0

20

40

60

80

0 10 20 30 40 50 60 70
0
5

10
15
20
25
30

0 5 10 15 20 25 30 35 40
0

5

10

15

Different level rasterisation with different grid size

(c) Resolution 0.12 (22, 43)

Figure 3.3: Structure visualization with different raster sizes.

A good tradeoff is the biggest grid size that results in a whole number when dividing
the block’s dimension. Table A.2 lists possible grid sizes and the quotient of each
distinct block dimension divided by the respective size. The grid size 0.07 results
in quotients with only a small remainder and has been chosen for all remaining
visualizations and tests.

3.1.2 Visual Encoding

As mentioned above, the “Visual Encoding” encodes the structure as if a picture
was taken of the visualized structure. Each science bird block’s dimension is directly
encoded into the width and height of the tiles in the structure representation. Two
different ways to determine what tiles a block should cover have been implemented.
The “Dot Encoding” encodes the structure as a whole through a grid of dots, while
the “Calculated Encoding” encodes each block individually in the structure repre-
sentation.

3.1.2.1 Dot Encoding

The “Dot Encoding” uses a grid of dots to determine the value of each tile. Each
dot of the grid represents a tile in the final structure representation. The dimension
of the grid is determined by the outermost blocks and the aforementioned raster
size.

The tile’s value is determined by checking if the dot intersects with any block. The
intersected blocks’ material determines the tile’s value, with zero being air and one
to three being wood, stone and ice, respectively. The original test structure with the
grid of dots is visualized in Figure 3.4.

Frederic Abraham 27

3 Concepts 3.1 Encodings

Figure 3.4: Encode the test structure using
a grid of dots to determine the
value of each tile.

0 5 10
0

5

10

15

20

(a) Original
0 5 10

0

5

10

15

20

(b) Encoded

Figure 3.5: The same block en-
coded in two differ-
ent dimensions.

The problem is that an individual block can be placed on the grid in such a way
that it covers different amounts of dots. Figure 3.5a shows the block outline of the
same block covered with a grid of dots. The right block is positioned on the grid to
cover four columns of dots instead of three. The “structure” encoded in Figure 3.5b
shows that the right block is wider than the left one, even so, they are the same
block.

3.1.2.2 Calculated Encoding

The “Calculated Encoding” approach does not create a grid over the whole struc-
ture but sets each block independently into the image. For each block, the horizon-
tal and vertical start and end position gets calculated. Ths positions are calculated
by taking the given centre position of the block and adding/subtracting the re-
spective half of the width/height. For both directions, the values in between are
interpolated using real-valued positions. To transform the positions into the grid
dimension indices, each value is divided by the grid size and rounded to the next
integer.

Doing only this comes with the same problem that the “Dot Encoding” has. The
possibility that a block is positioned on the grid in such a way that it would be
encoded too short. To solve this problem, a size check is introduced. It compares the
encoded dimension of each block with an apriori calculated block size so that every
same science bird block is encoded with the same dimensions.

Frederic Abraham 28

3 Concepts 3.1 Encodings

3.1.2.3 Block Encoding Comparision

The main difference between the two visual encoding approaches is that the “Dot
Encoding” prioritizes the dimensions of the whole structure as it does not encode
each block individually and sets its boundary through the structure, while the cal-
culated encoding prioritizes the dimension of each block.

(a) Calculated Encoding (b) Dot Encoding (c) Subtraction of both encod-
ings

Figure 3.6: Comparing the two structure encodings and visualising their difference.

Figure 3.6 shows the original test structure encoded once using the “Dot Encoding”
and the “Calculated Encoding”. By taking the difference of the encoded structure
representations, it can be seen that the dot encoding encodes multiple blocks in both
orientations differently.

The fact that the block encodings are not consistent over a structure represen-
tation when using the dot encoding becomes a problem in the decoding process.
Another downside to the dot method is that the time to generate the image encod-
ing is comparatively high as it takes more time to calculate the intersection for each
dot.

Visual
Encoding Decoding 2Decoding 1

Figure 3.7: Visualizing the ambiguity of the visual encoding.

One overall issue with the “Visual Encoding” is that it is ambiguous in its encod-
ing. An example of an ambiguous encoding is given in Figure 3.7. The centre image
represents a chunk of encoded pixels and can be made up of different block configu-
rations. Either to the left as four smaller square blocks or to the right as a stack of
four squares.

Frederic Abraham 29

3 Concepts 3.1 Encodings

3.1.3 One-Element Encoding

To address this ambiguous encoding problem, the one-element encoding represents
the dimension of each individual block not through the number of coloured pixels but
through the value of the pixel in the centre of the block, which is inspired by Tanabe
et al.’s level encoding, which encodes the structure as a data sequence explained in
Section 2.4.2.3. Figure 3.8 shows how the testing structure is represented in the
one-element encoding. Each individual block type with its material becomes only
one pixel that is located at the centre of the block.

0 1 2

3 4 5

6 7 8 9

10 11 12 13 14 15

16 17 18

19

Original Level 0 10 20 30 40 50 60 70
0
5

10
15
20
25
30

One Element Encoding

0

10

20

30

40

Figure 3.8: The test structure in one element encoding.

The problem is that the rotation of a block is not directly represented in the tile’s
value. To solve this problem, each 90-degree rotation of the rectangular blocks be-
comes its own block value, with the non-square blocks having both horizontally and
vertically oriented versions. (In Table A.1 block two to six.) This results in 13 in-
dividual block values from the original nine different science bird blocks listed in
Figure 1.2. Each block can be either of wood, stone or ice and therefore results in
the value range of [1, . . . , 39] while a pig gets encoded as a 40 and the air is still
zero.

As indicated in the overview Figure 3.1 the “One-Element encoding” does not re-
quire a decoding algorithm as every pixel has a defined meaning so that every struc-
ture representation can be decoded into a collection of blocks directly. This covers
only the decodability and not the structural integrity of the decoded structure. The
problem is that every coloured pixel could come too close to one another, and the
represented blocks would intersect if decoded directly. The issues of overlapping
blocks get highlighted in the results chapter. While this problem doesn’t exist in the
“visual encoding”, it instead has the problem that a set of pixels can not resemble
any type of block.

Frederic Abraham 30

3 Concepts 3.1 Encodings

3.1.4 Multilayer Representation

GANs data representations are usually not only two-dimensional. For example, face
synthesis requires three channels for the RGB-Color space, and Volz et al. (2018)
used ten channels in a one-hot encoding, one for each Mario block. Therefore there
are multiple distinct ways a structure representation can be split up into different
layers.

(a) Without air layer (b) With air layer

Figure 3.9: Expanding the test structure to encode over multiple layers. The z-axis
represents the layers and is scaled for visualization purposes.

Figure 3.9a shows the multilayer encoding, which splits the representation up in such
a way that blocks of one material are on the same layer. A reason to do this is that
having multiple semantic meanings in one pixel makes the training more difficult.
Letting the GAN simultaneously decide about the positioning of the elements and
their correct material in only one layer is difficult. By moving the materials to
different layers, the decision is reduced to if an element is present at a specific
position. Another problem of using a different value range removes the possibility of
interpreting the value as confidence in the pixel. A higher value does not mean more
confidence in this position but different material. The distance to the closest integer
could be used instead. A value right in between two values has less confidence than
a value which is spot on.

When using this multilayered encoding, the GANs output is a real-valued matrix in
which a value closer to one means there should be a block. To recreate the visual
representation given the multilayered output, a flattening process is required. With
the encoding of Figure 3.9a a real-valued threshold is required. This leaves the final
decision of where the air should be to this threshold. Adding a layer in which the
air is explicitly encoded, shown in Figure 3.9b, moves all decisions to the GAN. A
flat image is recreated by using the argmax operator.

Frederic Abraham 31

3 Concepts 3.1 Encodings

(a) Without air layer (b) With air layer

Figure 3.10: One Element encoding in multiple layers.

The same process of creating a multi-layer representation can also be applied to
the one-element encoding. Once without air (Figure 3.10a) and once with air (Fig-
ure 3.10b) in which little hols can bee seen in the last layer. In the representation
without air, the value range for an element goes from the previous [0, . . . , 40], which
represents every block type in every material, to [0, . . . , 13] for each block type of
one material. The pig layer is still one hot encoded.

Figure 3.11: Expanding the test structure to encode over multiple layers.

The last tried method to split the encoding over multiple layers is to move every
possible block type and material combination to an individual layer, creating a full
one-hot encoding. Figure 3.11 shows the side view of the test structure in the one-
hot encoding. Out of the 39 distinct blocks and the enemy position, 40 layers are
created. The x, y coordinate of the pixel represents the position equal to the one-
element encoding.

Frederic Abraham 32

3 Concepts 3.2 Decoding

3.2 Decoding

One major component of generating structures with GANs is a decoding process. It
describes how the encoded level is interpreted and used to recreate a level. Usually,
PCGML research uses an encoding that allows one-to-one decoding, which means
that no extra steps are required to create the level. As previously mentioned, this
can lead to broken elements, such as a broken pipe that consists of multiple tiles
(Volz et al. 2018), which was solved by encoding the whole group of tiles like the
one-element encoding. The decoding process can also include a healing section as
post-processing that fixes errors and tests for playability and repairs the level ac-
cordingly.

Of the two introduced encoding methods, only the visual encoding requires a more
complicated decoding algorithm because one block is encoded into multiple tiles. The
one-element encoding can be decoded one-to-one as each pixel represents a block, but
the block elements can overlap without any post-processing.

Two different algorithms have been developed to decode the visual representation.
One approach, the Recursive Rectangle Decoding (RRD) described in Section 3.2.1,
decodes perfectly based on the silhouette of the structure representation, and the
other, the Confidence Decoding (CD) described in Section 3.2.2, decodes through the
confidence and probability of the gan output. The RRD assumes a perfect structure
representation and is prone to fail if a block is missing a corner or if the representation
is noisy. While the CD greedily selects the block that covers the most contour area
and fits the best regardless of the combination of blocks.

3.2.1 Recursive Rectangle Decoding (RRD)

The RRD is separated into the “Rectangle Detection” part and the “Recursive Rect-
angle Selection” part. The first step (rectangle detection) describes the process of
how the structure representation is preprocessed to detect possible rectangles in the
contour of the structure representation. While the “Recursive Rectangle Selection”
recursively chooses these rectangles to fit science bird blocks in order to cover the
respective siluet. To aid the explanation for this decoding method, all steps in the de-
coding process are exemplarily done on the testing structure.

To initially separate the block combination and speed up the recursive selection
algorithm, further discussed in Section 3.2.1.1, all processing steps are done on each
material independently. Figure 3.12 shows the whole decoding process on the wood

Frederic Abraham 33

3 Concepts 3.2 Decoding

0

1 2

3
0

0

1 2

3

0

0
1 2

300
1 2

30

0
1 2

30

0

1

23

4

(a) Original

0

1 2

3
0

0

1 2

3

0

0
1 2

300
1 2

30

0
1 2

30

0

1

23

4

(b) Border following

0

1 2

3
0

0

1 2

3

0

0
1 2

300
1 2

30

0
1 2

30

0

1

23

4

(c) Found rectangles

0

1 2

3
0

0

1 2

3

0

0
1 2

300
1 2

30

0
1 2

30

0

1

23

4

(d) Fitted blocks

Figure 3.12: The images show the trivial case of the whole decoding process of the
first wood layer visualized in purple.

layer. In this material, all blocks are separated and do not form a combined structure
making the decoding case straightforward.

The first step of the decoding process, visualized in Figure 3.12b, starts with remov-
ing all pixels not belonging to the current layer, followed by finding the contours of
the blocks with OpenCV (Bradski 2000) using a border following algorithm. (Suzuki
and be 1985) Each contour is represented as a list of corners that can be of any length
bigger than three. With a list of corners, all rectangles that are inside the contours
are put into a list as shown in Figure 3.12c. As not all rectangles that can be found
in a contour have the dimensions of a science bird block, a filtering step removes all
impossible rectangles. In the last step, rectangles are recursively selected to fill the
contour area, further clarified in Section 3.2.1.2.

3.2.1.1 Rectangle Detection

The rectangle detection is done for each individual contour. A contour with only
four corners is a trivial rectangle, and the step is omitted. The rectangle detection
algorithm is split into two sections: (1) the first section, given in Algorithm 3.1,
searches for extra possible rectangle corners in the contour border and (2) the second
section, given in Algorithm 3.2, selects four dots and checks if they form a rectangle
inside of the contour.

Algorithm 3.1: Dot extending Algorithm
1 input: list of corner dots
2 output: extended list of corners
3 begin
4 // Inner corners
5 for A, B ← consecutiveBorder(i)
6 if A, B do not share a corner and A, B are perpendicular
7 intersection p1 ← getIntersection(A, B)
8 addCorner(p1)
9

10 dotDistance c ← closest vertical or horizontal distance between each dot
11

12 // Search for intersections between non−consecutive line pairs
13 for A ← line on contour starting at index i

14 for B ← line on contour starting at index i + 2

Frederic Abraham 34

3 Concepts 3.2 Decoding

15

16 // Check intersection and check for integrity
17 intersection p1 ← getIntersection(A, B)
18 if p1 exists
19 or p1 is on corners of A, B

20 or p1 is not on A, B

21 or p1 exists on contour list
22 continue
23

24 // Add intersection and pairs to the contour line that it is on
25 C ← select A or B on which p1 is on
26 p2, p3 ← points along C next to p1 with distance c

27 addCorner([p1, p2, p3])
28 end

The input to the algorithm is the corners found by the border following algorithm
(Suzuki and be 1985), which detects inside and outside corners of the contour, as
shown in Figure 3.13a. The main part, lines 12 to 22, uses each consecutive pair of
corners to form a line, which is used to search for intersections between those lines
if they would extend infinitely in both directions. A requirement for an intersection
is that it needs to fall on a line. For each found intersection, two dots are added
along the line to serve as possible rectangle corners. The first section, in lines 4 to 9,
adds a dot for each inside corner as these would not fall on a line but are required
to detect a rectangle with only inside corners. An example of the need for the inside
corners is given in Appendix A.3.

0 10 20 30 40 50 60 70

0

10

20

30 0

1 2

3

0

1
2

3 4

56
7

80

1 2

3

0

1 2

3
4 5

60

1 2

3
4 5

6

Original Dots

0 10 20 30 40 50 60 70

0

10

20

30 0

1 2

3

0

1
2

3 4 5 6 7 8 9

101112
13

140

1 2

3

0

1
2
3

4 5

6
7 8 9

101112130

1
2
3

4 5

6
7 8 9

10111213

With Added Dots

0 10 20 30 40 50 60 70

0

10

20

30

Found Rectangles

(a) Original Dots
0 10 20 30 40 50 60 70

0

10

20

30 0

1 2

3

0

1
2

3 4

56
7

80

1 2

3

0

1 2

3
4 5

60

1 2

3
4 5

6

Original Dots

0 10 20 30 40 50 60 70

0

10

20

30 0

1 2

3

0

1
2

3 4 5 6 7 8 9

101112
13

140

1 2

3

0

1
2
3

4 5

6
7 8 9

101112130

1
2
3

4 5

6
7 8 9

10111213

With Added Dots

0 10 20 30 40 50 60 70

0

10

20

30

Found Rectangles

(b) Added Dots

Figure 3.13: Steps in finding possible rectangles.

The input (Figure 3.13a) and result (Figure 3.13b) of Algorithm 3.1 is visualized
in Figure 3.13. The first image shows the corners given by the border following
algorithm (Suzuki and be 1985), and the second image shows the contours with dots
that form possible rectangles. From the intersection marked with a red rectangle,
two dots that were added in this location are required to reconstruct the original
test level.

Frederic Abraham 35

3 Concepts 3.2 Decoding

Algorithm 3.2: Rectangle Selection Algorithm given a list of dots.
1 input: List of dots dots on the contour
2 output: List of rectangles
3 begin
4 rectangleList ← new list
5 // rectangle in order along the contour
6 for p1, p2, p3, p4 ← combination of four (dots)
7 if ||

√
p1 − p3| − |

√
p2 − p4|| > ϵ // unequal diagonals

8 or |(p1 − p2)× (p2 − p3)| > ϵ // Unorthogonal corners
9 or |(p3 − p4)× (p4 − p1)| > ϵ

10 continue outer loop
11

12 // Rectangle inside contour
13 for center_point ← [(p1 + p2)/2, (p2 + p3)/2, (p3 + p4)/2, (p1 + p4)/2]
14 if center_point is not inside Contour
15 continue outer loop
16

17 add Rectangle([p1, p2, p3, p4]) to rectangleList
18 return rectangleList
19 end

With all necessary corners given, the Algorithm 3.2 selects each 4-corner combina-
tion and checks if it spans a rectangle inside the contour. A rectangle is defined by
checking if the diagonals are equal in length and the opposite corners are perpen-
dicular. To check that the rectangle is not outside the contour, each edge of the new
rectangle is checked if the centre point is inside of the contour.

46 48 50 52 54 56 58

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

0 12

3

45

678 9

10

Unfiltered

46 48 50 52 54 56 58

7.5

10.0

12.5

15.0

17.5

20.0

22.5

0 1

2

3

4

Filtered

50 55 60 65 70

26

28

30

32

0

1
234 56

7

8

Unfiltered

50 55 60 65 70

24

26

28

30

32

0

1

2

3

Filtered

Figure 3.14: Selected rectangles through the Algorithm 3.2 and their filtered version
for eligibility.

The original results of the rectangle selection can be seen in the unfiltered images of
Figure 3.14. Multiple of these rectangles are not in the shape of any block or block
combination to be possible candidates. A filtering step is added to remove all rectan-
gles that are either too small or whose dimensions are not possible, given all possible
stacked block combinations. To do this step, the width and height of all possible

Frederic Abraham 36

3 Concepts 3.2 Decoding

block combinations limited by four stacked blocks are calculated and put into a list.
The filtering process simply checks if the dimension of the rectangle appears in both
lists. The result of this filtering process is given in Figure 3.14.

3.2.1.2 Recursive Block Selection

This section describes the algorithm which recursively selects the block-shaped rect-
angles given by the Algorithm 3.2.

Algorithm 3.3: Block selection algorithm.
1 input: list of rectangles, required area, occupied area ← 0, selected blocks ← []
2 output: List assigned blocks
3 begin
4 // stop condition
5 if occupied area = required area
6 return selected blocks
7

8 // Filter rectangles
9 foreach possible rectangle

10 foreach already selected block:
11 if possible rectangle overlaps selected block
12 or possible rectangle to close to a selected block
13 remove rectangle
14 // Main part
15 foreach possible rectangle
16 if block exists that fits the rectangle perfectly
17 selected block ← block that fits in rectangle perfectly
18

19 return recursive call (
20 list of rectangles ← remaining rectangles,
21 required area ← required area,
22 occupied area ← occupied area + area of selected block,
23 selected blocks ← selected blocks + selected block,
24)
25 // Too big rectangles
26 foreach possible rectangle
27 for stack direction ← [vertical, horizontally]
28 for n ← n blocks in combination from 2 to 5
29 block combination ← combination of n blocks with same secondary dimension
30

31 if block combinations do not fit in the stack direction perfectly
32 continue
33

34 if block combinations are too small in the secondary direction
35 add remaining space as a new rectangle to the list of rectangles
36

37 return recursive call (
38 list of rectangles ← remaining rectangles,
39 required area ← required area,
40 occupied area ← occupied area + area of block combination,
41 selected blocks ← selected blocks + block combination,
42)
43 return No combination found
44 end

Frederic Abraham 37

3 Concepts 3.2 Decoding

The Algorithm 3.3 selects blocks until the contour area is covered. The first step of
the recursive algorithm is to remove all rectangles from the list of possible rectangles
that interfere with the previous selection. In the first iteration, no rectangles are
removed as there are no previous block selections. This includes any rectangles that
overlap the selected block or share an edge with it. The actual block selection is split
into two parts: (1 - Line 16 to 25) Of all valid rectangles with the same dimensions
as an existing block, the biggest is selected, and the algorithm is recursively called
with the remaining rectangles. (2 - Line 28 to 45) If no block is big enough, then the
rectangle is made out of a combination of blocks. The possible blocks can be stacked
either vertically or horizontally. Firstly we check if a block is stacked vertically
because any horizontal separation results in worse stability. The second iteration
goes over the number of stacked blocks. Each stacked block needs to have the same
secondary dimension. Otherwise, the combination of blocks wouldn’t be a rectangle.
If the combination of blocks fits perfectly, the big rectangle gets removed from the
list of possible rectangles, and the block selection gets called recursively. If the
stacked blocks do not fill the secondary direction completely, a new rectangle is
created in the remaining space, which needs to be filled in a deeper iteration. An
example in which this case is required is visualized in Figure A.4. The new rectangle
is also checked for validity. Otherwise, this rectangle would create many unnecessary
recursive calls.

46 48 50 52 54 56 58

7.5

10.0

12.5

15.0

17.5

20.0

22.5

0 1

2

3

4

(a) Input 1
0 5 10

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

0

1

(b) Output 1

RectFat - 0

RectSmall - 3

(c) Selection Graph

Figure 3.15: The first result of the more complex shapes in the test structure.

Figure 3.15 shows the input and output of the block selection algorithm of the upside-
down L-shape. The last Figure 3.15c shows the selection order and shows that the
shape can be directly decoded without any block-stacking or wrong selection, as the

Frederic Abraham 38

3 Concepts 3.2 Decoding

first selection of the biggest rectangle (ID 0) eliminates all intersecting rectangles
and leaves the correct rectangle (ID 3).

50 55 60 65 70

24

26

28

30

32

0

1

2

3

(a) Input 1
0 5 10 15 20

0

2

4

6

8
0

1

2

(b) Output 2

RectFat - 2 X

RectSmall - 3

RectFat - 2 X
RectMedium - 0
RectMedium - 0

(c) Selection Graph

Figure 3.16: The second more complex result of the shape in the test structure,
which includes wrong rectangle selection and block stacking.

In the more complex selection visualized Figure 3.16 the recursive block selection
can be visualized as a tree. The graph shows that the algorithm tries to select the
rectangle (ID 2) and leaves the area to the left of that rectangle open. The next
possible non-stacking rectangle is the upper rectangle (ID 3) which leaves the lower
bigger rectangle open with only two rectangles left. As the recursive call tries to
select the non-stacking blocks first the selection fails again with a smaller rectangle
(ID 2) and finally selects the fitting rectangle (ID 0) which requires the stacking of
two RectBigs

It can be seen that the algorithm represents the depth-first search over the rectangles
and each wrong selection that can not produce a solution adds a lot of iteration to the
search. Every early termination is required to make the algorithm more performant.
An implemented speed-up is to check each iteration if the remaining rectangles could
possibly fill the area, which stops unsuccessful paths earlier. Another speed-up can
be achieved by limiting the blocks which are used in the search for a fitting block
combination. Only blocks that actually fit into both dimensions of the rectangle are
considered in the combination. An example with a bit more selection depth is given
in Figure A.5.

The last step of the decoding process is to determine the pig positions. This is
done using an erosion operation (Soille 2004) which is used in morphological image

Frederic Abraham 39

3 Concepts 3.2 Decoding

processing. It removes each pixel if the sum of its neighbouring pixels given by
a structuring element is less than a minimum. The used structuring element is a
pig-sized circle, which reduces each encoded pig to one pixel that determines the
position.

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

0

1

2

3

4

5

6

7

8

9

10

11

12

1314

15 16

17

18

19

Figure 3.17: Finished decoding result.

All algorithms combined for each layer produce the result in Figure 3.17.

3.2.2 Confidence Decoding (CD)

As previously explained, the Confidence Decoding (CD) is compared to the Recur-
sive Rectangle Decoding, the greedy linear approach for decoding a structure rep-
resentation. The main idea of the algorithm is to use convolution of block-shaped
filters over the structure representation. The algorithm can be done either on each
material separately or on one layer combined. It is important that the value of the
pixel is in the range of zero and one, representing the confidence that this pixel
belongs to a block. The steps of the algorithm are visualized with the previous test
structure.

3.2.2.1 Matrix creation

The first step is to use convolution to create two matrices over the structure. The
first one (“Hit Probabilities Matrix”) represents how well a block type fits into any
specific position, and the second (“Size Ranking Matrix”) represents a ranking of
how many pixels would be covered if this block type is put into that position. A
combination of both matrices creates a ranking over each pixel which is used to
select blocks in a greedy manner.

Frederic Abraham 40

3 Concepts 3.2 Decoding

SquareHole 0.83 / 120.0 RectBig 0.97 / 84.0 RectBig (Vert) 0.93 / 81.0

RectFat 1.0 / 72.0 RectFat (Vert) 0.88 / 63.0 RectMedium 1.0 / 72.0

RectMedium (Vert) 1.0 / 72.0 SquareSmall 1.0 / 36.0 RectSmall 1.0 / 36.0

RectSmall (Vert) 1.0 / 36.0 RectTiny 1.0 / 18.0 RectTiny (Vert) 1.0 / 18.0

SquareTiny 1.0 / 9.0

Figure 3.18: Matrix (each image represents a layer) represents the hit probability
and size ranking. The first value in the tile of an image represents the
highest hit probability while the second value is the highest size ranking
of the respective block. “Vert” marks the block type rotated.

The “Hit Probabilities” matrix is created using multiple gaussian kernels in the
shape of each block type. It can be seen that the smaller blocks in the lower rows
fit perfectly, represented by a probability of one, while the bigger blocks that do not
appear in the structure have a lower hit probability, as they do not cover any location
completely. If only the highest hit probabilities were used in the selection process,
any small imperfections in the representation would dismiss any bigger block that’s
intended to be there, and a group of smaller blocks that fit perfectly would be used
instead. The “Size Ranking” matrix uses a sum kernel that sums the value of each
pixel.

Figure 3.19 shows the combination of the two initial matrices through layer-wise
multiplication. This is done to prevent the previously mentioned problems when
using only one of the two matrices. It can be seen in Figure 3.19a that the horizontal
RectBig still has the highest selection probability even though it crosses gaps in the
encoding. By clipping at a high hit probability, which is only possible due to this
example being a perfect encoding, the block types that cross gaps are eliminated.
The matrix that gets passed into the block selection algorithm is the clipping matrix
in Figure 3.19b.

Frederic Abraham 41

3 Concepts 3.2 Decoding

SquareHole 80.0 RectBig 113.54 RectBig (Vert) 75.41

RectFat 72.0 RectFat (Vert) 55.12 RectMedium 86.4

RectMedium (Vert) 72.0 SquareSmall 36.0 RectSmall 43.2

RectSmall (Vert) 36.0 RectTiny 21.6 RectTiny (Vert) 18.0

SquareTiny 9.0

(a) Selection Ranking

SquareHole 0.0 RectBig 0.0 RectBig (Vert) 0.0

RectFat 72.0 RectFat (Vert) 0.0 RectMedium 86.4

RectMedium (Vert) 72.0 SquareSmall 36.0 RectSmall 43.2

RectSmall (Vert) 36.0 RectTiny 21.6 RectTiny (Vert) 18.0

SquareTiny 9.0

(b) Clipped at 0.98

Figure 3.19: Layer-wise multiplication of the Hit Probability matrix and Size Rank-
ing matrix creates the selection ranking. A clipping parameter p controls
how well each block has to fit into the space and creates the clipping
matrix with valid pixels to choose from in the block selection.

3.2.2.2 Linear Block Selection

The block selection is a straightforward algorithm that chooses the highest value of
the clipping matrix and removes all pixels that become invalid through this selection.
Invalid means any pixel that would produce a block that would overlap with the
previous selection.

SquareHole RectBig RectBig (Vert)

RectFat RectFat (Vert) RectMedium

RectMedium (Vert) SquareSmall RectSmall

RectSmall (Vert) RectTiny RectTiny (Vert)

SquareTiny

(a) Square Hole

SquareHole RectBig RectBig (Vert)

RectFat RectFat (Vert) RectMedium

RectMedium (Vert) SquareSmall RectSmall

RectSmall (Vert) RectTiny RectTiny (Vert)

SquareTiny

(b) Rect Big

SquareHole RectBig RectBig (Vert)

RectFat RectFat (Vert) RectMedium

RectMedium (Vert) SquareSmall RectSmall

RectSmall (Vert) RectTiny RectTiny (Vert)

SquareTiny

(c) Vertical Rect Big

Figure 3.20: Exemplary three matrices that show the delete matrix used to remove
the invalid pixels. The selected block is marked in the centre.

To do this efficiently, a matrix is created for every possible block type before running
the algorithm. This matrix gets multiplied with the input matrix at the position
of the selected block. The matrices are initially identity matrices, and the pixels

Frederic Abraham 42

3 Concepts 3.2 Decoding

that belong to the selected block and the pixels in which a neighbouring block
would overlap are set to zero. Figure 3.20 shows the delete matrix for three block
types and the region that is deleted by the matrix. It can be seen how the centre
block shape and outside block shape influence the removed region. By precalculating
the deletion matrices, the operation is done with a singular matrix multiplication
instead of calculating the affected ranges for each block combination individually
each time.

SquareHole 0.0 RectBig 0.0 RectBig (Vert) 0.0

RectFat 72.0 RectFat (Vert) 0.0 RectMedium 86.4

RectMedium (Vert) 72.0 SquareSmall 36.0 RectSmall 43.2

RectSmall (Vert) 36.0 RectTiny 21.6 RectTiny (Vert) 18.0

SquareTiny 9.0

(a) Iteration 1

SquareHole 0.0 RectBig 0.0 RectBig (Vert) 0.0

RectFat 72.0 RectFat (Vert) 0.0 RectMedium 0.0

RectMedium (Vert) 0.0 SquareSmall 36.0 RectSmall 43.2

RectSmall (Vert) 36.0 RectTiny 21.6 RectTiny (Vert) 18.0

SquareTiny 9.0

(b) Iteration 8

SquareHole 0.0 RectBig 0.0 RectBig (Vert) 0.0

RectFat 0.0 RectFat (Vert) 0.0 RectMedium 0.0

RectMedium (Vert) 0.0 SquareSmall 0.0 RectSmall 0.0

RectSmall (Vert) 36.0 RectTiny 0.0 RectTiny (Vert) 18.0

SquareTiny 9.0

(c) Iteration 17

Figure 3.21: Three selected iterations in the selection process and which pixels are
removed in the process.

The selection process for the test structure has 18 iterations in which a block is
chosen. Figure 3.21 visualizes the first, the eighth and second last iteration to show
the process of how the available block locations become fewer over each step. The
blue rectangle marks the block location which was chosen, and the rectangle marks
where pixels are removed. The block selection stops if every pixel is removed from
the image. The last step of the decoding process is to determine the pig positions
by using a circular kernel, followed by the same selection process until every pixel
that is above an apriori threshold is selected.

Frederic Abraham 43

3 Concepts 3.2 Decoding

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

0 1 2

3 4 5

6

7 8 9

10 11

12 13 14 15 16 17

18

(a) Without Recalibration
0 10 20 30 40 50 60 70

5

10

15

20

25

30

35

0 1 2

3 4 5

10 11 6

12 13 14 15 16 17

7 8 9

18

(b) With recalibration

Figure 3.22: Result of the decoding process (a) without recalibrating and (b) with
recalibrating.

The finished result of the decoding process can be seen in Figure 3.22a. A problem
with using only the centre position as the block position is that a block with an un-
even dimension is put off-centre. This can be fixed by adding a recalibration step that
moves each block up and to the right until it is out of the blocks that are further down
and left. The results of this step can be seen in Figure 3.22b.

3.2.2.3 Parameter

Different parameters that control the decoding process and result in different results
are implemented. One way to influence which block should be used is by modifying
the sum kernel with a scaler depending on the block type.

SquareHole 115.2 RectBig 121.8

SquareHole 144.0 RectBig 87.0

Without Scaling

With Scaling

(a) Selection Matrix

10 15 20 25 30 35

20

25

30

35

40

0 1

2 3

4

(b) without Scaling

5 10 15 20 25 30 35

20

25

30

35

40

0

1

2

3

4

5

6

7

(c) With Scaling

Figure 3.23: The effect of using block type scaling on the sum kernel.

Figure 3.23 shows the effect of block scaling on a selected example. The “Square-
Hole” block covers a lot of pixels and produces a high selection rank. By giving
blocks that are more horizontal a bigger scaler, and vertical blocks and squares a
smaller scaler, the selection of the blocks are changed. This can affect the stability
of a structure as more vertical block combinations are less stable than one bigger
horizontal one.

Frederic Abraham 44

3 Concepts 3.2 Decoding

0 5 10 15 20 25

0.0

2.5

5.0

7.5

(a) Original Contour

RectBig 121.8

1.

RectBig 116.25

2.

(b) Without -1 border

RectBig 152.74

3.

1.

2.

RectBig 152.74

RectBig 83.8

(c) With -1 border

Figure 3.24: The effect of using a minus one border around the sum kernel.

Another way to influence the decoding method is to encourage the selection of blocks
closer to the edge of a contour with the minus one border parameter. Without
any special method, the algorithm simply selects the block with the highest value,
and if two pixels have the same value, the one that comes earlier is selected. This
puts the selection at risk of floating point imprecisions and chooses, for example,
a centre block that would block the better block selection. By adding a -1 border
around the sum kernel, a block that is in the centre of a contour receives a smaller
value. Figure 3.24 shows an example in which a contour with impurities produces
only two blocks at the centre of the contour while using the minus one border selects
the border blocks first and doesn’t overwrite the centre pixels.

10 15 20 25 30

28

30

32

34

0

1 2

10 15 20 25 30

28

30

32

34

0

1

With a negativ air value of -15

Air value of 0

(a) Decoded result

SquareHole 0.0 RectBig 0.0 RectBig (Vert) 0.0

RectFat 0.0 RectFat (Vert) 0.0 RectMedium 72.45

RectMedium (Vert) 0.0 SquareSmall 0.0 RectSmall 43.2

RectSmall (Vert) 0.0 RectTiny 21.6 RectTiny (Vert) 0.0

SquareTiny 9.0

(b) Without negative air

SquareHole 0.0 RectBig 0.0 RectBig (Vert) 0.0

RectFat 0.0 RectFat (Vert) 0.0 RectMedium 27.6

RectMedium (Vert) 0.0 SquareSmall 0.0 RectSmall 43.2

RectSmall (Vert) 0.0 RectTiny 21.6 RectTiny (Vert) 0.0

SquareTiny 9.0

(c) With negative air

Figure 3.25: Using a negative air value to encourage better block positioning.

The air value, which is by default zero, can be set to any negative value. This
only affects the size ranking and not the precision ranking and encourages a better
positioning of blocks that do not overlap any gaps. Figure 3.25 shows the effect of
this value once with a negative air value of 15 and once without. It can be seen how

Frederic Abraham 45

3 Concepts 3.3 Model Training

the selection in Figure 3.25b chooses the RectMedium as the value is higher, while
in Figure 3.25c, the individual blocks receive a higher value as they do not cross any
negative value. The effect of the minus one border parameter gets amplified when
using a negative value for the air.

Changing the clipping parameter influences how well a block has to fit into a given
space. Figure 3.26 visualizes the selection matrix of the test structure clipped once
at 0.4 (3.26a) and once at 0.85 (3.26b). It can be seen that the SquareHole (Top-
Left) does not fit into any block and is removed if the selection ranking is clipped at
0.85 while it is still visible when clipped at 0.4. Compared to the clipping of 0.95 in
Figure 3.19b, the RectBig is still visible and would be selected even so the resulting
decoding and overlap gaps in the structure representation.

SquareHole 80.0 RectBig 113.54 RectBig (Vert) 75.41

RectFat 72.0 RectFat (Vert) 55.12 RectMedium 86.4

RectMedium (Vert) 72.0 SquareSmall 36.0 RectSmall 43.2

RectSmall (Vert) 36.0 RectTiny 21.6 RectTiny (Vert) 18.0

SquareTiny 9.0

(a) Clipped at 40

SquareHole 0.0 RectBig 105.43 RectBig (Vert) 64.24

RectFat 72.0 RectFat (Vert) 39.38 RectMedium 86.4

RectMedium (Vert) 72.0 SquareSmall 36.0 RectSmall 43.2

RectSmall (Vert) 36.0 RectTiny 21.6 RectTiny (Vert) 18.0

SquareTiny 9.0

(b) Clipped at 85

Figure 3.26: Clipping the size ranking matrix at different hit probability values.

The last two parameters for this algorithm control the gan output rather than the
decoding itself. The first option (combine layers) controls if all output layers of the
GAN should be combined into a single layer. The second parameter (Round Inte-
ger) controls whether the pixel values should be rounded to the closest integer value.
If all layers are added together, the decoding has to assign a material to the selected
block by checking which layer had the most influence over the selection. In other
words, the material is assigned by checking which layer had the highest confidence
a block should be at the position of the selected block.

3.3 Model Training

With the encoding and decoding of a structure representation covered in the previous
sections. This section describes how the data presentation is processed and used for
training.

Frederic Abraham 46

3 Concepts 3.3 Model Training

Train Wrapper

Visualizer

Train Stepper Epoch

Load Dataset

Load Gan ModelRepresentation

Dimension

Create
Generator

Create
Discriminator

Create
Optimizer Batch

Train

Discriminator

Train

Generator

Create GAN
Outputs

Gather
model data

Store
models

Figure 3.27: Flow diagram of the training algorithm with interchangeable GAN
Model and “Train Stepper”.

Figure 3.27 describes the abstract training process of any gan model. The given
interchangeable components are the specific GAN model and the optimizer function
labelled “Train Stepper”. Given a dataset of n structure representations, the first
selection is what GAN model is loaded. The chosen structure representation defines
the dimension of the model’s layers, as the generated output has to match that of
the structure representation.

The train stepper is responsible for training the discriminator and generator over
one batch. It also encapsulates the previously mentioned objective functions used
to train the networks. Two implemented training algorithms have been tried.
The original approach described in Section 2.3.1 and the Wasserstein-GAN with
gradient penalty, explained in Section 2.3.3.2 as a state-of-the-art training algo-
rithm.

Frederic Abraham 47

4 Approach

With all foundations covered in the previous chapters, this chapter puts the pieces
together into individual tests. This includes the different created datasets used in
various training runs. Each combines the data creation process and the source of the
structures, the encoding method for each structure and any further preprocessing
step. The data creation includes the simulation of the structure in the Science Birds
game, and if enabled the playing of the level with AI. The WebSocket interface of
the game was modified to allow interaction with the structure generation process
to retrieve the data and still allow for Science Bird AI to interact with the game
through a separate WebSocket connection.

One training run is defined by a combination of the dataset, model architecture and
training method and hyperparameters. The specific models used in the experiments
are grouped in two sets, and their differences are explained in Section 4.2. After
the training has been completed, the quality of the results can be visually evalu-
ated by plotting the output and quantitatively evaluated by reviewing the amount
of stable decoded structures. Finally, the created application is presented in Sec-
tion 4.4, which is used to interact with every previously mentioned aspect of the
thesis.

4.1 Data Creation

The dataset is one of the most crucial parts of training a machine learning model,
as it defines what the model tries to create. There are two options for creating a
dataset, human-made levels and computer-generated ones. Only a few human-made
Angry Birds levels are available, and their design makes it difficult to parse into a
block representation. The limitation of only using 90-degree block rotations removes
a chunk of available levels. Of the 100 levels that were ported into Science Birds,
only 50 contain 90-degree increment rotation in their design, which is too few for
training a machine learning model to create a sufficient variety of structures. Due to
these reasons, all training datasets were created using Stephenson and Renz (2017)
level generator, presented in Section 2.4.2.2.

Frederic Abraham 48

4 Approach 4.1 Data Creation

The generator can be tuned to create levels with specific widths and heights, prede-
fined block types and amounts of structures. It also only uses 90-degree rotations in
its creations. While this generator can produce levels that contain only one struc-
ture, the data creation process was structured to function with levels that contain
multiple structures.

2.0

1.5

1.0

0.5

0.0

-0.5
0 1 2 3 4 5

(a) Loading GAN Models

6

5

4

3

2

1

0

0 2 4 6 8 10

(b) Storing GAN Models

Figure 4.1: Hand-created level with multiple structures and their grouping by colour.

Given a level with multiple structures, such as the levels in Figure 4.1, the data
creation process filters the slingshot platform and groups each block into a structure.
The algorithm iterates over every block and searches for the closest structure. If no
structure is found, a new structure group is created, while if only one group is
found, the block gets assigned to it. If more than one structure is found, the block
functions as a binding piece and they get merged together. Figure 4.1a shows that
this grouping process can result in small structures of only two blocks Another
difficulty can be seen in Figure 4.1b, where the pigs inside the structure have an air
gap between and the surrounding structure. If that air gap were too big, the pigs
would be detected as individual structures and the upper distance limit has to be
selected accordingly.

While the structure representation could incorporate multiple structures, this would
increase the size of the structure representation. In Section 4.2 is further discussed
how the GAN model limits structure representations dimensions. On top of that, a
composition of multiple structures can be combined into one level after the structures
are generated.

Each structure’s metadata, namely start and end position in both axis and the re-
sulting width and height, the number of blocks grouped by special block, material
and pigs, and simulation data like stability, block damage and AI score, are col-
lected and stored alongside the structure representation. More on the simulation in
Section 4.1.3.

Frederic Abraham 49

4 Approach 4.1 Data Creation

Three different structure data sets were generated. The first Smaller Dataset used
200 levels that contain multiple structures, which are separated into 622 structure
representations through the aforementioned algorithm. For the second dataset, the
Big Dataset, 5000 levels are generated, each containing only one structure While
having more structures overall, the structure’s width and height are smaller com-
pared to the Smaller Dataset. This is the dataset which is used in a majority of
training iterations. The last created dataset is the Wood Dataset containing 5000
structures and restricts, as the name implies, the allowed materials to only one. This
allows every multilayer representation, which scales by the number of materials, to
become smaller or a one-hot encoding resulting in better semantic representations,
as previously discussed. An example level for coming from each data set is attached
in Figure A.6, A.7 A.8 respectively.

Also previously discussed is the tendency of GANs to mode collapse, which is cir-
cumvented by carefully balancing the training of the generator and discriminator
but also balancing the diversity in the dataset. In the original task of face synthesis,
the datasets only rarely include the same faces multiple times, therefore a mode
collapse due to dataset imbalance is no problem. On the other hand, using a gen-
erator to create many structures can result in several repeating structures, which
would increase the probability of a mode collapse. One approach to circumvent this
problem is to filter the datasets to include more diversity.

4.1.1 Structure Filter

The two filters that have been implemented search once for levels with
the same metadata and unify the number of levels with similar dimen-
sions.

The metadata filter uses the previously collected metadata and filters every struc-
ture with the same amount of blocks per material combined with having the same
width and height with a 0.1 margin. For example, the two structures of Figure 4.2a
have the same metadata, and one is removed. The shape filter removes structures
with exactly the same encoding regardless of their metadata. Two levels in Fig-
ure 4.2b use different blocks and therefore do not share their metadata but have the
exact same structure, and one is also removed. Structures with only a few blocks
often share their metadata and structure due to the limited amount of possible block
combinations, this could lead to an underrepresentation of structures with a small
block amount.

Frederic Abraham 50

4 Approach 4.1 Data Creation

0 20 40 60 80

0
5

(10, 84)

0 20 40 60 80

0
5

(10, 83)

(a) Metadata Match

0 10 20 30 40

0

10

20

30

40

50

60

0 10 20 30 40

0

10

20

30

40

50

60

Same shape

(b) Same Shape

Figure 4.2: Filtering by searching for similar structures

4.1.2 Structure Merging

The main goal of the second filter is to equalize the number of levels per height with
the intent that the GAN produces more diverse levels. It groups every structure
by its height and merges the closest groups with less than 50 levels into buck-
ets.

20 40 60 80
Height of Levels

0

100

200

300

400

500

600

700

Am
ou

nt
 o

f l
ev

el
s

Before merging: 4987

20 40 60
Height of Levels

0

100

200

300

400

500

600

700

Am
ou

nt
 o

f l
ev

el
s

After group merging: 4959

20 40 60
Height of Levels

0

20

40

60

80

100

120

140

160

Am
ou

nt
 o

f l
ev

el
s

After Unifying: 3566

Figure 4.3: Unifying the structure diversity and creating a more equal amount of
levels with different heights in the second dataset.

Each step is visualized in the set of bar charts in Figure 4.3. The average of the
number of levels in each bucket gets calculated, and every bucket gets trimmed by

Frederic Abraham 51

4 Approach 4.1 Data Creation

this average. From the 5000 levels of the second dataset, 3566 levels remain while
3957 remain in the second dataset. The last step is to convert the dataset into a
TensorFlow format to load them easily in the training process. On loading a dataset,
the structure representation gets normalized between −1 and 1 and transformed into
tensors.

4.1.3 Simulation modifications

The open-source Science Birds game has an interface designed to play with AI. It
originally provided only the functionality to create screenshots of the whole level
and send them encoded to the AI, which uses Computer Vision (CV) to analyze the
structure and plan its move. While this step is part of the AI competition, it is not
beneficial for collecting data about the generated levels, and more functionality is
built into the simulation to help collect data. To receive the simulation data, the
generator framework implemented a WebSocket (WS) server to which the simulation
can connect to.

The WS functionality was extended with a few features, and already existing fea-
tures were modified: (1) To be able to connect simultaneously to the Science Bird
games, a second WS is added, which waits for a connection with the generator while
still allowing an AI to connect normally. It uses the port provided as a command line
argument which allows to run multiple instances next to one another, which acceler-
ates the level simulation. (2) The WS call that selects a level now answers collected
data of the loaded level. It comes with the capability to stop the game time to review
the initial block positioning and to better screenshot a collapsing structure and the
option to wait for the structure to become stable to have more data in the answer.
A function that iterates over all present levels and collects their stability data. (3)
A few minor added features include screenshotting only the structure instead of the
whole level, a callback which waits till a level is finished loading, enabling the AI
WebSocket, and receiving the data of played levels.

The second main extension was to add data collection to the playing or simulating
of a level, depending on whether the game is actually played or not. The following
data gets collected from the moment the level is loaded until no block is moving
anymore:

1. The number of dying pigs

2. The number of blocks that received so much damage that they got destroyed
grouped by material

Frederic Abraham 52

4 Approach 4.2 Gan Models

3. The initial and cumulative damage done to blocks. The initial damage repre-
sents the damage after the blocks stop moving after the initial level loading.
If the level is not played, the cumulative damage always equals the initial
damage.

4. The boolean value, whether the structure is stable based on the total initial
block velocity

5. If the level has been played on

6. The amount used birds in the play through

7. If the level has been played, then if it was won or lost on the first try.

The data can be requested at any point in the simulation as it is globally stored in
the science birds instance.

4.2 Gan Models

With the data creation process covered, the concrete models used to create the
structures are explained in this section. As mentioned in Section 3.3, two training
algorithms and two model types have been tried. Both versions are implemented in
different variations depending on the used dataset. For example, a multilayer struc-
ture representation comes with more input layers, and a model made for a single-
layer representation could not handle the representation.

4.2.0.1 Simple GANs

The design of the first set of GANs are based on the Small Dataset and is overall
shallower and uses only two deconvolution blocks compared to the second set de-
scribed in Section 4.2.0.2. It is also primarily used with the original GAN training
algorithm described in Section 2.3.

Figure 4.4 visualizes the first version of a generator from the first set. Each layer is
grouped into a functional block that combines a layer that uses trainable weights, a
normalization layer and an activation function. The values above each block show
the respective output shape or resolution of the last layer of the block. It can be
seen that “based on the used dataset” translates to the last output layer matching
the max dimension of the structure representations of the used dataset. To reach
this dimension, two transposed convolutions are used with a five-wide kernel and a
stride of two, doubling the previous resolution. The initial noise vector with a size

Frederic Abraham 53

4 Approach 4.2 Gan Models

256 1

Reshape
Input Block

Dense 22 35 256

Batch Normalization

Leaky ReLu

298496 1 22 53 256 22 53 128

Filter Block
Conv Transpose

128 / (5, 5) / (1, 1)

Batch Norm

Leaky ReLu

44 106 64

Enlarge Block
Conv Transpose

64 / (5, 5) / (2, 2)

Batch Norm

Leaky ReLu

Output
Conv Transpose

1 / (5, 5) / (2, 2)

Tanh

88 212 1

Figure 4.4: Layers of a generator from the first set of GANs.

of 256 gets put into a dense layer, creating the required amount of outputs for the
following filter block. Over all layer blocks, the generator uses batch normalization
as recommended by Goodfellow et al. (2016) and Radford et al. (2015) with leaky
rectified linear units (LeakyReLU) in their activation except for the last layer, which
uses Tanh to recreate the datasets dataspace.

44 106 64

Reduce Block 1
Convolution
64 / (5, 5) / (2, 2)

Leaky ReLU

Dropout: 0.3

88 212 1 22 53 128

Reduce Block 2
Convolution
128 / (5, 5) / (2, 2)

Leaky ReLU

Dropout: 0.3

Flatten
Output

Dense 1

149248 1 1

Figure 4.5: Layers of a discriminator from the first set of GANs.

The discriminator, described in Figure 4.5, takes the structure as input and uses
normal convolution layers with LeakyReLU and dropout as reduction blocks to
come to its conclusion. With a stride of two, the reduction blocks half the resolution
each time. To produce a single scaler, a dense layer is used, which takes the flattened
output of the last reduction block.

This set’s remaining GANs differ only in the final output resolution. This is archived
by changing the number of output neurons in the initial dense layer, followed by using
the reshaped layer. The implemented GANs have an output resolution of 100× 112
and 100 × 116, which is smaller than the first GAN, removing the need for a big
initial dense layer. The reduction was made possible by removing the exceptionally
large structures from the test dataset.

Frederic Abraham 54

4 Approach 4.2 Gan Models

4.2.0.2 Convoluiton GANs

The second set of GANs is based on the deep convolutional generative adversarial
network explained in Section 2.3.3.1.

1 1 128 32 32 64

Enlarge Block 4
Conv Transpose

64 / (4, 4) / (2, 2)

Layer Normalization

ReLu

64 64 32

Enlarge Block 5
Conv Transpose

32 / (4, 4) / (2, 2)

Layer Normalization

ReLu

128 128 1

Enlarge Block 6
Conv Transpose

1 / (4, 4) / (2, 2)

Layer Normalization

Tanh

4 4 512

Enlarge Block 1
Conv Transpose

512 / (4, 4) / (1, 1)

Layer Normalization

ReLu

8 8 256

Enlarge Block 2
Conv Transpose

256 / (4, 4) / (2, 2)

Layer Normalization

ReLu

16 16 128

Enlarge Block 3
Conv Transpose

128 / (4, 4) / (2, 2)

Layer Normalization

ReLu

Figure 4.6: Fully convolutional generator based on the DCGAN.

Figure 4.6 describes the deeper generator model. Compared to the first set, the
GANs of this set uses exclusively transposed convolutional layers to enlarge the
image resolution. The stride of two doubles the resolution with each layer block,
limiting the possible resolution to a power of two. As described in Section 2.3.2.1,
the recommended batch normalization layers were replaced by layer normalization.
Another reason to avoid batch norm is that a WGAN assumes independence be-
tween samples in a batch, which would be introduced through batch normaliza-
tion.

8 8 512

Reduce Block 4
Convolutional

512 / (4, 4) / (2, 2)

Layer Normalization

Leaky ReLu: 0.2

4 4 512

Reduce Block 5
Convolutional

512 / (4, 4) / (2, 2)

Layer Normalization

Leaky ReLu: 0.2

64 64 64

Reduce Block 1
Convolutional

64 / (4, 4) / (2, 2)

Layer Normalization

Leaky ReLu: 0.2

32 32 128

Reduce Block 2
Convolutional

128 / (4, 4) / (2, 2)

Layer Normalization

Leaky ReLu: 0.2

16 16 256

Reduce Block 3
Convolutional

265 / (4, 4) / (2, 2)

Layer Normalization

Leaky ReLu: 0.2

128 128 1

Output
Convolutional

1 / (4, 4) / (1, 1)

Figure 4.7: Critic that only uses convolutional layers

The discriminator or Critic is visualized in Figure 4.7. While the generator only
uses transposed convolution, the Critic only uses convolutional layers to reduce the
img size to arrive at a decision. Instead of normal ReLU activation, it uses leaky
LeakyReLU as recommended by Radford et al. (2015) in their architecture guidelines
for stable Deep Convolutional GANs.

The architecture for the multilayer representation simply uses more filters in the
generator’s last layer and the discriminator’s first layer. This allows the generation
of a four or five-layered output depending on the provided structure representation.
Based on Volz et al. (2018) recommendation, the last model that was tested uses a

Frederic Abraham 55

4 Approach 4.3 Evaluation and Training

different activation function in the last layer of the generator. Instead of the original
Tanh, they used a ReLU, which improved their results.

4.3 Evaluation and Training

This section reviews the concrete evaluation methods used to validate various aspects
of the thesis. It briefly reviews the used training hardware and capabilities that
mainly limited the amount of tested model variety.

4.3.1 Evaluation

Various aspects of this thesis can be evaluated, such as the model’s capability, the
encoding and decoding algorithms, and their respective capabilities to decode the
output of a model. Evaluating a GANs models capabilities usually requires a human
expert to review the results manually. If the GAN mode collapsed and produces
only a small variety of outputs or if the produced images are not usable can be
easily seen. This visual inspection is mostly enough to compare the GANs perfor-
mances to create a stable structure because most do not create a decodable structure
representation or, in the case of the one-element encoding, create non-playable struc-
tures.

4.3.1.1 Encoding Decoding

The encoding and decoding can be tested by how reliable the algorithm can decode
the input structure. Reliability in encoding/decoding can be interpreted in a few
ways: (1) if it recreates the structure with the original block selection, (2) if the po-
sitioning of the blocks is equally close, and (3) if the stability is affected in any way.
The first two points can be evaluated with a fabricated test structure that uses a va-
riety of block combinations and reviews the decoded structure.

The test structure is visualized in Figure 4.8. It simply uses all used block types
and puts them next to one another. Figure 4.8b and 4.8c show that the stacking
direction can be modified, and the spacing of the blocks can be increased in such a
way that it varies between each block type.

To validate the effect on the stability of the structure, an evaluation algorithm sim-
ulates the original structure and its encoded and decoded counterpart and compares
the collected data. This can be compared to the encoding and decoding approach
introduced by Tanabe et al. (2021) in their VAE-LSTM model.

Frederic Abraham 56

4 Approach 4.3 Evaluation and Training

0.0 2.5 5.0 7.5 10.0
0

2
0 1 2 3 4 5 6 7

8
9

10
11

12

(a) Original with screenshot

0 2 4 6 8 10
0

1

2

3

4

0

1

1

2
2

3

3

4

4
5

5
6 6

7

7
8 8

9

9
10

10

11

11
12

12

13

(b) Verticaly stacked
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

2

0 1 1 2 2 3 3 4 45 5 6 67 7 8
89

9 10

1011

11 12

1213

(c) Horizontally stacked

Figure 4.8: Test level used to evaluate encoding/decoding behaviour of different en-
coding/decoding algorithms.

4.3.1.2 Quantitative Evaluation

A quantitative evaluation of the GAN with the most promising capabilities to gen-
erate stable structures is done. To do this, a grid search over the parameter space
of the confidence decoding algorithm with a fixed set of generated structure rep-
resentations has been implemented. Using the found parameter, a quality search
over 4400 generated structures has been done to search for stable structures with
desirable characteristics such as block variety, block amount, or structure dimen-
sions.

For the grid search, a total of 200 structure representations are initially generated for
this test. Each gets decoded with every parameter combination in the search space,
followed by simulating the resulting structure. For every structure, its metadata and
simulation data are collected. The parameter space is created through the param-
eters of the “Confidence Decoding” explained in Section 3.2.2.3. The boolean type
parameters, namely the (1) round to next int, (2) use custom kernel scale, (3) use
of minus one border and (4) if all layers should be combined, can be in two states.
These alone create 24 parameter sets. As the number of parameter combinations
grows exponentially, only a few values of the continuous value-based parameter can
be chosen. The five negative values [−10,−5,−2,−1, 0] are tested for the negative
air parameter. For the clipping parameter, only the four values [0.1, 0.5, 0.8, 0.95]
are tried. This creates 2 · 2 · 2 · 2 · 5 · 4 = 320 different sets of parameters that are
tested.

Doing an exhausting grid search that includes decoding and simulating all structures
with every parameter combination is a lengthy process. To speed up this process,
the decoding of all 200 structures is parallelized to fully utilize the computing power,

Frederic Abraham 57

4 Approach 4.4 Testing application

which reduces the time it takes to create the structures. Similarly, multiple instances
of Science Birds are started for the simulation, and each receives an equally sized
set of decoded structures to collect the simulation data.

4.3.2 Training

Training a GAN is relatively expensive as we train two models, and WGANs in
particular require a longer overall training time due to the lower learning rate. The
initial training of the first set of GANs was executed on a Jetson AGX Xavier
card. Its low power requirement meant that while having much GPU memory, the
performance was not suited to train the deeper convolutional GANs. Most of the
convolutional GANs training is done on the RWTH High-Performance Computing
cluster, which uses NVIDIA Volta 100 GPUs, reducing the training time from 7 days
on the Jetson to 2 days on the cluster.

4.4 Testing application

An application has been developed to test the different aspects of the thesis. This in-
cludes the encoding and decoding algorithms and interacting with the trained GAN
models. In Figure 4.10, a screenshot of the application is given, and six sections with
distinct functionality are marked with coloured rectangles. The most notable feature
is that the visualized structure is an GAN output which is loaded into the drawing
area (green rectangle) by rounding to the closest integer and its original output visu-
alization with its individual layers on the right (red rectangle).

This indicates the first feature of the application is for loading GAN models, gener-
ating their structures and storing the outputs. This is put into the bottom left and
right corners, marked with blue and purple rectangles. In the blue area, each avail-
able model gets listed in the dropdown and can be loaded into the GPU. Internally
the used normalizing, encoding and flatting methods are stored and loaded along-
side the model. After a model is loaded, a random seed is created, and its output is
displayed as seen. In the purple area, the output can be labelled, stored and loaded
at a later time.

The drawing area marked with a green rectangle is a major component of the appli-
cation. It is used to test different edge cases of the decoding algorithms and allows
the creation of a structure in the visual and one-element representation. It is also
used to display the GAN output rounded to the closest integer and into one layer
reduced.

Frederic Abraham 58

4 Approach 4.4 Testing application

(a) Smily Original
10 20 30 40 50 60

20

30

40

50

60

0

1

2

3

4

5

6

7
8

9
10

11

12

13

14

15

16
17

18

19
20

21
22

23

24

25

(b) Smily Decoded

Figure 4.9: The decoding of the smiley used to visualize the drawing capabilities of
the Level Drawer application.

Figure 4.9 shows the buttons that are used for the block-type selection and highlights
that the drawing area functions like a regular painting area in which the drawing
pencil is in the shape of the selected block type. The drawn smiley emphasizes that
any arbitrary structure can be created. If the decoding mode, top right corner, is set
to one element, the drawn image colours only the centre block of the selected block
type (Figure A.9).

The control elements in the top left corner (orange rectangle) are for interacting
with the RRD algorithm, visualizing the found rectangles and rectangle selection
algorithm graph. Also, the levels of the Big Dataset can be loaded into the drawing
area. Interacting with the simulation instance can be done through the buttons in
the top right corner (blue rectangle).

Calling the decoding algorithm, the button in the bottom right corner opens a
parameter window, as seen in the attached Figure A.10. This uses reflections to set
the parameters in the decoding object and calls the decoding function with the input
selected.

Frederic Abraham 59

4 Approach 4.4 Testing application

Fi
gu

re
4.

10
:T

he
w

ho
le

te
st

in
g

ap
pl

ic
at

io
n

w
ith

in
di

vi
du

al
se

ct
io

ns
m

ar
ke

d
th

ro
ug

h
co

lo
ur

ed
re

ct
an

gl
es

.

Frederic Abraham 60

5 Results

The result chapter reviews the individual training instance and experiments to eval-
uate a model’s performance with a decoding algorithm. In this chapter, only a few
exemplary outputs are shown for each test, with more generated examples are online
available. 1

As previously mentioned, the majority of GAN models are only reviewed visually,
as further inspections would be unwarranted in most cases. Each individual model
training is defined by the design decisions of the used encoding algorithm, the used
data set, the generators and discriminators model architecture, the used training
algorithm and consequently, the training hyperparameters.

Initially, in Section 5.1, models from the Simple GAN model set are used to com-
pare the effect of the original training algorithm, explained in Section 2.3.1 to the
WGAN algorithm explained in Section 2.3.3.2. In the second result Section 5.2, the
individual encoding approaches, One-Element, True-One-Hot and Visual-Encoding,
are used in the created data set to train the model and are visually inspected on
a few selected examples. The last result Section 5.3 combines the findings of the
previous results sections in the selected model, training algorithm and encoding
approach to test the Confidence Decoding parameters and the overall generated
structures.

5.1 GAN training method

In the original GAN training, the discriminator only decides between real and fake,
while the critic in the WGAN algorithm interpolates between the real data distribu-
tion and the generated data and points into the correct direction through more stable
gradients. The first reviewed results are from the set of Simple GAN architectures
described in Section 4.2.0.1. Four different runs are done with the first two training
instances, Section 5.1.1, using the original training algorithm, while the following
two, Section 5.1.2, have been trained using the W-GAN training algorithm. The used
1 https://drive.google.com/drive/folders/1hVITtDA0Yi31pRdN56g4KWprBdTlnvPO

Frederic Abraham 61

https://drive.google.com/drive/folders/1hVITtDA0Yi31pRdN56g4KWprBdTlnvPO

5 Results 5.1 GAN training method

dataset is the Smaller Dataset, it uses the “Visual Encoding” with the dot method
for encoding the blocks in a single-layer representation.

5.1.1 Original GAN Training

0 20 40 60 80 100

0

20

40

60

80

Probability -5.534999847412109

0.0

0.2

0.4

0.6

0.8

1.0

(a) Structure 1
0 20 40 60 80 100

0

20

40

60

80

Probability -4.056000232696533

0.0

0.2

0.4

0.6

0.8

1.0

(b) Structure 2
0 20 40 60 80 100

0

20

40

60

80

Probability -4.243000030517578

0.0

0.2

0.4

0.6

0.8

(c) Structure 3

Figure 5.1: Structure generated with the Simple GAN architecture.

Figure 5.1 shows the first results with the original training algorithm and the Simple
GAN architecture. It can be seen that the model mode collapsed into generating
only simple structures. All generated structures contain only one rectangle at the
bottom and either one or two pigs sitting on top with no further variation. Further
in Figure 5.1c can be seen that the created rectangle has a value closer to air than
the next block value, which is visualized in Figure A.11.

The dataset used in the first training iteration wasn’t filtered with the struc-
ture filter (4.1.1) or unified through structure merging (4.1.2). Training the
same model but with a filtered dataset produces the results shown in Fig-
ure 5.2.

0 20 40 60 80 100

0

20

40

60

80

Probability -6.131999969482422

0.0

0.2

0.4

0.6

0.8

(a) Structure 1
0 20 40 60 80 100

0

20

40

60

80

Probability -7.057000160217285

0.0

0.2

0.4

0.6

0.8

(b) Structure 2
0 20 40 60 80 100

0

20

40

60

80

Probability -6.658999919891357

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Structure 3

Figure 5.2: Structures generated with the Simple GAN architecture and a filtered
dataset.

It can be seen the variety in generated structure representations is higher compared
to the first training iteration. Now it contains two blocks instead of one and also

Frederic Abraham 62

5 Results 5.1 GAN training method

contains a greater variety in the number of used pigs. While still being heavily
mode collapsed this shows the importance of balancing the dataset when using
GANs.

5.1.2 WGA Training

As mentioned in the Mode Collapse Section 2.3.2.1, the WGAN training algorithm
was one of the major factors in combating the mode collapse problem. Using the same
GAN architecture but trained with the WGAN algorithm on the filtered dataset
produces the results of Figure 5.3.

0 20 40 60 80 100

0

20

40

60

80

Probability -18.667999267578125

0.2

0.0

0.2

0.4

0.6

0.8

(a) Structure 1
0 20 40 60 80 100

0

20

40

60

80

Probability -18.687999725341797

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Structure 2
0 20 40 60 80 100

0

20

40

60

80

Probability -18.882999420166016

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Structure 3

Figure 5.3: Structures generated with the Simple GAN architecture, filtered dataset
and the WGAN training algorithm with a stochastic gradient descent
optimizer.

The generated structure variety is more diverse compared to the training iterations
using the original training algorithm, but the quality of the generated structures
is worse than before. The representations contain more uncertainty which can be
seen in the unclear block boundaries and the overall blurry appearance of most of
the blocks. While the perceived structure in Figure 5.3a looks almost stable, the
generated structure in Figure 5.3b has floating block elements and can not be stable
at all. More generated structures are attached in Figure A.12.

To remove the probability of not training long enough, instead of training for 5000
epochs, the following training iteration is over 15000 epochs. Also, instead of the
stochastic gradient descent optimizer (Robbins 2007), the adam optimizer (Kingma
and Ba 2014) as recommended by Radford et al. (2015) was used. Furthermore, the
dataset with 3000 structures encoded using the Calculated Visual encoding was used
to increase the structure variety.

The generated structures, visualized in Figure 5.4, have the same perceived quality
compared to the previous training iteration. It seems to be the case that the GAN

Frederic Abraham 63

5 Results 5.2 Encoding Results

0 20 40 60 80 100

0

20

40

60

80

Probability -3.0799999237060547

0.0

0.2

0.4

0.6

0.8

(a) Structure 1
0 20 40 60 80 100

0

20

40

60

80

Probability -2.559000015258789

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Structure 2
0 20 40 60 80 100

0

20

40

60

80

Probability -3.5

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Structure 3

Figure 5.4: Structures generated with the Simple GAN architecture, filtered dataset
and the WGAN training algorithm with a Adam optimizer over 15000
epochs.

is not limited by the training length. More generated structures are attached in
Figure A.13.

As diversity in the generated structures is more important than to only generat-
ing the same level, the WGAN algorithm has been used in all following training
iterations. The problems with the quality can be solved by using a different model
architecture, as can be seen in the later sections. Also, every training iteration is
over 15000 epochs with the Adam optimizer and a learning rate of 0.0001, five critic
training steps for every generator training step and a gradient penalty weight of
10.

5.2 Encoding Results

This section reviews the reliability of the different encoding methods in combination
with the aforementioned set of design decisions. The models used in this approach
are the Convolutional Models described in Section 4.2.0.2.

5.2.1 One Element Encoding

Decoding the blurry generated structure representations of Section 5.1.2 with the
mentioned uncertainty, which visualizes itself in the blurry blocks, is difficult. A
more promising approach to create a decodable structure generation is given with
the always decodable “One-Element” encoding.

Frederic Abraham 64

5 Results 5.2 Encoding Results

5.2.1.1 Single-Layer

The first iteration of using the One-Element encoding uses the single-layer repre-
sentation. This means the value range of the structure representation is between
[0, . . . , 40] and every non-zero pixel represents a block.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Probability 37.441001892089844

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(a) Original generated structure representa-
tion

0 10 20 30 40 50 60 70 80

0
5

10
15
20
25
30

Probability 37.441001892089844

0
5
10
15
20
25
30
35

(b) Readjusted and rounded to the next inte-
ger

Figure 5.5: The generated structure representation trained on the One-Element en-
coding once in the normalized data space (a) and once in the original
data space (b) rounded to the next integer.

The originally generated structure representation in the normalized data space of
[−1, . . . , 1] is visible in Figure 5.5a. Moving the values into the original dataspace
and trimming all the air results in Figure 5.5b on the right. It can be seen that a few
encoded blocks form lines, and an overall structure can be made out. The problem
in this representation is that every uncertainty or noise in the encoding becomes an
encoded block with no way to differentiate if the pixel is due to noise or if it is an
intended block placement. As the representation is still decodable with all the noise,
the resulting structure is given in Figure 5.6.

Besides the fact that there is no block that doesn’t overlap another block, there also
does not exist an enemy in the structure. When moving the blocks to the simulation,
as seen in Figure 5.6b, the game automatically pushes each block outside of one
another, resulting in a big pile of blocks.

When looking at other generated structures of the One-Layer encoding, two are
exemplarily visualized in Figure 5.7, it can be seen that the initially selected struc-
ture is comparatively small. The value ranges of the two structures indicate further
that they only contain blocks of the first wood material instead of various materials

Frederic Abraham 65

5 Results 5.2 Encoding Results

0 20 40 60 80
40

30

20

10

0
0 1

2 3

4 5
6

7
89

10 11

12 1314 1516 17 18 19 20

21

22
23

24

25

26

27

28

29

30
31

32

33

34

35

36

37

38

39

40
41 4243

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58

(a) Decoded into a structure (b) Send to the game and simmulated

Figure 5.6: The structure of Figure 5.5 decoded into individual blocks.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Probability 36.36399841308594

1.0

0.9

0.8

0.7

0.6

0.5

(a) Structure 2
0 20 40 60 80 100 120

0

20

40

60

80

100

120

Probability 36.38399887084961

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

(b) Structure 3

Figure 5.7: Generating more examples of the Single-Layer One-Element Encoding.

indicating that the GAN is unable to produce singular pixels with high values sur-
rounded by zeros. The decodings of the two structure representations are attached
in Figure A.14.

5.2.1.2 Multi-Layer

As described in Section 3.1.4, moving each material onto its own layer can alleviate
the problem of high values to a certain degree as each layer now uses a value range
of [1, . . . , 13]. Therefore the next trained iteration uses the One-Element multilayer
representation.

An example of a generated structure is given in Figure 5.8. The Figures 5.8b to 5.8e,
on the right, represent each layer of the multilayered encoding. The Figure 5.8a on
the left is the flattened reconstruction of the Single-Layer representation used in
the decoding process. The reconstruction method uses an argmax operator over
the layers to decode from which layer a block comes. As this encoding does not

Frederic Abraham 66

5 Results 5.2 Encoding Results

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Probability 15.074000358581543

0

5

10

15

20

25

30

35

40

(a) Flattend Representation

0 10 20 30 40 50 60

0

5

10

15

20

25
0

1

2

3

4

5

6

(b) Wood Layer
0 10 20 30 40 50 60

0

5

10

15

20

25
0

1

2

3

4

5

6

7

(c) Ice Layer

0 10 20 30 40 50 60

0

5

10

15

20

25
0

1

2

3

4

5

6

(d) Stone Layer
0 10 20 30 40 50 60

0

5

10

15

20

25
0

2

4

6

8

10

12

(e) Enemy Layer

Figure 5.8: A structure representation generated in the One-Element multilayer en-
coding.

use a designated air layer, the flattening process adds a threshold layer with a
value of 0.5 to the beginning of the matrix. The argmax operator creates a two-
dimensional matrix of indices that are used to select the value of the respective
layer. The maximum layer value of 13 is added depending on the layer from which
the block comes.

0 10 20 30 40 50 60 70

30

25

20

15

10

5

0

5

0

1

2
3

4 5 6
7

8

9

10

11

12

13
14

15
16 17

1819

20

21

22

23 24

25

26
27
28

29

30

3132

33

34 35

3637 38

39

(a) Structure 2 (b) Structure 3

Figure 5.9: Visualizing the decoding and simulation of the One-Element Multilayer
representation of Figure 5.8

The previously described problems of existing noise that results in unwanted blocks
is not solved with this representation. Most of the generated structures have over-
lapping blocks that interfere with one another resulting in an unstable structure,
exemplarily shown in Figure 5.9, the decoding the One-Element multilayer repre-
sentation of Figure 5.8.

One major problem of the encodings that use a value range on each individual layer
is that the values do not represent how certain the GAN is but rather which block
type should be placed.

Frederic Abraham 67

5 Results 5.2 Encoding Results

5.2.2 True-One-Hot Encoding

This problem can be solved by moving each block type to its own layer as described
in the One-Hot encoding of Section 3.1.4. This means a value closer to 1 translates
into a higher certainty of the model that a block should be at the location. Any
kind of noise is supposedly lower in value and can be filtered by removing any pixel
below a certain threshold.

0 10 20 30 40 50 60

0

5

10

15

20
0

10

20

30

40

(a) Flattend into Single-Layer
0 20 40 60

20

10

0 0 1

23 4

5 6 7 8 9

(b) Decoded

Figure 5.10: A structure generated in the True-One-Hot encoding using the convo-
lutional GAN with the WGAN training method. The layers are clipped
at 0.7.

Figure 5.10a shows the flattened version of a structure representation in the True-
One-Hot encoding. The noise is removed by clipping each layer and removing every
value below 0.7, which is impossible in the previous One-Element representations, as
different values represent different blocks, and a clipping would simply remove the
possibility of certain block types. It can be seen in the decoded structure visualized
in Figure 5.10b that the model placed the enemies perfectly on top of the rectangular
blocks on the bottom. This shows that the model learned to reconstruct structure
formation to a certain degree.

5.2.2.1 Clipping Values

A problem with this model can be seen when reviewing the same structures at
different clipping thresholds. Figure 5.11 shows the previously generated structure
of Figure 5.10 clipped at different thresholds. It can be seen that the same problems
of overlapping blocks occur as in the previous One-Element encoding. The version
with the lower threshold, in Figure 5.11a has evidently more overlapping blocks
compared to Figure 5.11b.

One could think a solution to this problem is simply setting the threshold to a
high value to remove every block which contains any uncertainty. Figure 5.12 visu-
alizes that it could be the case that structural blocks required for the stability of

Frederic Abraham 68

5 Results 5.2 Encoding Results

0 10 20 30 40 50 60 70

0

5

10

15

20
0

10

20

30

40

(a) Clipped at 0.23
0 10 20 30 40 50 60 70

0

10

20
0

10

20

30

40

(b) Clipped at 0.5

0 20 40 60 80

20

10

0

10

0 1 2

3 4

5

6

7 8

9 10 11 12 13 14 15

(c) Decoding of 0.23
0 20 40 60 80

20

10

0 0 1

2 3

4

5 6

7 8 9 10 11 12

(d) Decoding of 0.5

Figure 5.11: The same structure representation of Figure 5.10 clipped at different
value thresholds

0 10 20 30 40 50 60

0

5

10

15

20
0

10

20

30

40

(a) Clipped at 0.95
0 10 20 30 40 50 60 70

20

10

0 0

12

3 4 5 6 7

(b) Decoding of the 0.95 clipped

Figure 5.12: Visualizing the problem with a high clipping parameter.

the structure are removed. Even so, in this example, a high threshold is not cru-
cial for the overall structure stability the following bigger examples emphasize this
problem.

It seems the GAN using this encoding method is able to generate structures, but
most of the bigger structures suffer from the same overlapping block issue or are
floating sporadic blocks resulting in an unstable structure. The generated structure
representation, visualized in Figure 5.13, has the aforementioned problems. Even
clipped at a higher threshold leaving only certain blocks behind, contains overlapping
and floating blocks meaning.

5.2.2.2 True-One-Hot with Air

Adding an air layer to the representation, as previously explained in the Multi-Layer
Section 3.1.4, removes the requirement of a threshold as the decision where the air
should go is entirely encoded into the representation. A new True-One-Hot encoding
was trained with the air layer in the representation, but training the One-Hot model

Frederic Abraham 69

5 Results 5.2 Encoding Results

0 10 20 30 40 50

0

5

10

15

20

25

30

35
0

5

10

15

20

25

30

35

40

(a) Structure 2, clipped at 0.5
0 10 20 30 40 50

0

5

10

15

20

25

30

35 0

5

10

15

20

25

30

35

40

(b) Structure 2, clipped at 0.9

10 0 10 20 30 40 50 60 70
50

40

30

20

10

0

0

1

2

3

4

5

6

7

8

9
10 11

12

13 14

15

16

17

18

19

20

21

22

23

24 25

26

2728 29

30

31

32 33

34

35

36 37

(c) Decoding of (a)
10 0 10 20 30 40 50 60

40

30

20

10

0

0

1

2

3

4

5

6

7

8

9

(d) Decoding of (b)

Figure 5.13: Another generated structure in the True-One-Hot encoding, clipped at
two different thresholds

is relatively expensive. The training of the previous model took 84h on the RWTH
cluster compared to the usual 48h with the 4-layered representation due to the size
difference of the One-Hot encodings representation.

A smaller version of the One-Hot encoding is trained on smaller structures with
only wooden blocks from the third Wood Dataset. This means this smaller version
uses only a 15-layered representation, one air layer, 13 block layers and one enemy
layer.

Two more structures with the smaller True-One-Hot encoding are visualized in Fig-
ure 5.14. It can be seen that even with an extra air layer, the encoding does not
solve the overlapping block problem. The second structure in Figure 5.14d, while
still containing a lot of noise and overlapping blocks, has more defied structural in-
tegrity and fewer floating blocks compared to the 40-layer True-One-Hot structures.
More examples of this encoding are appended in Figure A.15.

It can also be seen that in the representation of Figure 5.14c, a “coloured” pixel
is usually right next to one another, which consequently results in an overlap-
ping block. This phenomenon hints at a fundamental problem when using con-
volutional GANs and the One-Element representation, which is further discussed
in Section 6.1.2. Another approach to fix this problem could be a more elaborate

Frederic Abraham 70

5 Results 5.2 Encoding Results

0 5 10 15 20 25 30 35 40

0

5

10

15

20 0

2

4

6

8

10

12

14

(a) Structure 1 in Small One-True-Hot encod-
ing with air

0 10 20 30 40

20

15

10

5

0

0 1

2 3

4

5

6

7 8

9 10

(b) Structure 1 decoded

0 10 20 30

0

10

20

30

40

50

0

2

4

6

8

10

12

14

(c) Structure 2 in Small One-
True-Hot encoding with
air

0 10 20 30 40

60

50

40

30

20

10

0

0

1

2

3

45 6 7 89

10

11 12

13

14

15 1617 1819

20 21

22 23 24 25

26

27

28

2930 31 32

33 34

35

36

37

38

39

4041 42 43 44

45

46

(d) Structure 2 decoded

Figure 5.14: Using the small true one hot encoding with the extra air layer.

decoding algorithm, similar to the “confidence decoding”, that selects the most con-
fident block and removes every surrounding pixel that would result in an overlapping
block.

5.2.3 Visual Multilayer Encoding

Combining the knowledge of the previous results, this training iteration uses the
convolutional GAN trained over 15000 epochs with the WGAN algorithm. The en-
coding is the same calculated visual encoding as in Section 5.1.2 but in this iteration,
not on a single layer but separated into the multilayer representation. The first Sec-
tion 5.2.3.1 reviews the encoding version without an extra air layer which requires
the clipping threshold. The second Section 5.2.3.2 adds the air layer to the repre-
sentation.

Frederic Abraham 71

5 Results 5.2 Encoding Results

5.2.3.1 Visual Multilayer Without Air Layer

0 20 40 60 80 100 120

0

20

40

60

80

100

120
1

0

1

2

3

4

(a) Flattend Representation

0 20 40 60 80 100 120

0

20

40

60

80

100

120
1.0

0.5

0.0

0.5

1.0

1.5

(b) Wood Layer
0 20 40 60 80 100 120

0

20

40

60

80

100

120
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(c) Ice Layer

0 20 40 60 80 100 120

0

20

40

60

80

100

120
1

0

1

2

3

(d) Stone Layer
0 20 40 60 80 100 120

0

20

40

60

80

100

120
1

0

1

2

3

4

(e) Enemy Layer

Figure 5.15: A structure in the multilayer visual representation and its layers.

Figure 5.15 shows the first most promising generated structure so far, which re-
sembles a more complex structure that appears stable. The separate layers in Fig-
ure 5.15b to 5.15e show that the blocks are well separated over the layers and don’t
interfere in most cases. Even so, there is noise on every layer, a threshold of 0.5 for
the air removes most of it.

20 40 60

0

10

20

30

40

50

60

70

80

0

1 2

3

4

5 6

7

8

9

10

11

12

13
14 15 16

17

18

19

20

21

(a) Decoded Structure
0 50 100 150 200

0

50

100

150

200

250

(b) Simulated

Figure 5.16: The generated structure of Figure 5.15 decoded using the confidence
decoding and send to the simulation.

Frederic Abraham 72

5 Results 5.2 Encoding Results

The structure of Figure 5.15 decoded with the confidence decoding is visible in
Figure 5.16. The decoded structure simulated shows a stable structure that contains
structural blocks and added blocks with no structural purpose. While this approach
seems promising, it still produces structures of low quality.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Probability -521.27197265625

1

0

1

2

3

4

(a) Structure 2
0 20 40 60 80 100 120

0

20

40

60

80

100

120

Probability -519.7659912109375

1

0

1

2

3

4

(b) Structure 3
0 20 40 60 80 100 120

0

20

40

60

80

100

120

Probability -522.0

0

1

2

3

4

(c) Structure 4

Figure 5.17: Three structures in the multilayer visual representation with lower qual-
ity.

Three more generated structures are shown in Figure 5.17. It can be seen that the
three structures have some partially incomplete blocks, more holes in the structure
and the overall blurriness of the contours are less defined, which makes the decoding
difficult. All of these structures are flattened using an air threshold of 0.5. Another
fully visualized example of a structure generated using this encoding is appended in
Figure A.16.

5.2.3.2 Visual Multilayer With Air Layer

While the previous training iteration seems promising, the extra threshold param-
eter causes more problems. If the value is too low, a lot of noise is added to the
structure, hindering the decoding process, while a value that is too high can add
holes in the representation, also creating problems in the decoding process. In the
previous One-Element encoding, adding the air layer helped the GAN to better
differentiate between air and block positioning, reducing the overall noise in the
structure representation. The last training iteration uses the same setup but with
the added air layer described in Section 3.1.4.

All layers of a structure generated by this model are visualized in Figure 5.18. It
can be seen that the Air Layer (5.18a) is the negative of the remaining layers that
create the structure. The highest value on each layer is used to recreate a single-layer
representation. As this is the model used in the quantitative and qualitative search

Frederic Abraham 73

5 Results 5.3 Quantitative Evalutation Results

0 20 40 60 80 100 120

0

20

40

60

80

100

120
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Air Layer
0 20 40 60 80 100 120

0

20

40

60

80

100

120
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(b) Wood Layer
0 20 40 60 80 100 120

0

20

40

60

80

100

120
1

0

1

2

3

(c) Ice Layer

0 20 40 60 80 100 120

0

20

40

60

80

100

120
1

0

1

2

3

4

(d) Stone Layer
0 20 40 60 80 100 120

0

20

40

60

80

100

120
1

0

1

2

3

4

5

(e) Enemy Layer

Figure 5.18: The layers of a structure in the representation that uses an explicit air
layer.

for stable structures, more examples of structures generated through this GAN are
shown in Section 5.3.2.

5.3 Quantitative Evalutation Results

The quantitative evaluation, as previously explained, is done on the convolutional
GAN with the calculated visual encoding in the multilayer version with air. First,
the results of the grid search are displayed, followed by using the found parameters
to search for structures with different characteristics.

5.3.1 Grid Search Results

The grid search results are the combination of the decoded structure’s metadata and
their simulation results. There are two main ways to evaluate the data of the search.
The first one searches for the parameter set that resulted in the desired structure
characteristic, and the second compares the effect when changing a parameter over
all of the accumulated data.

Frederic Abraham 74

5 Results 5.3 Quantitative Evalutation Results

5.3.1.1 Characteristic Search

The searched parameter sets are split into two groups. The first group searches for
the parameter sets that optimize a characteristic that is calculated in the simulation
of the structure:

• The lowest amount of initial cumulative damage to a block or pig, which
minimizes the Damage.

• The highest percentage of stable structures as calculated by the simulation
through the block velocity method explained in Section 4.1.3. This set max-
imises the Is Stable percentage.

• The set that produces the minimal number of blocks that receive so much
damage that they were destroyed.

Each parameter set over the simulation data indicates the stability of the structure,
either directly or indirectly. While the second group searches for a set that maximises
specific metadata of the generated structure:

• The highest overall number of blocks.

• The average highest structure.

• The average widest structure.

The resulting parameter values for each characteristic are given in Ta-
ble A.3.

41.06

15.7

4.29 3.74 4.84

18.8

42.46

19.88

4.36 3.79 4.9

20.32

43.63

13.71

4.09 3.74 4.86

18.6

Damage Is Stable # Total Blocks Destroyed Height Width # Block
0

5

10

15

20

25

30

35

40

45

Smallest Damage Most Stable Min Destroyed Blocks

Loading [MathJax]/extensions/MathMenu.jsFigure 5.19: Collected data of the parameter sets in the first group that optimize
for the smallest damage (blue), most stable (red) and least destroyed
blocks (green).

Frederic Abraham 75

5 Results 5.3 Quantitative Evalutation Results

The search characteristics that are visualized in Figure 5.19 aim at the stability of
the structures. Blue is the one that minimized the received damage, red is the stable
percentage, and green is the number of destroyed blocks. All parameter sets share
that they use the block scaling parameter. As a reminder, block scaling influences
the probability of selecting a horizontal rectangular block. This evidently influences
the stability of the generated structure positively, as a long horizontal block adds
more support than a narrow vertical one. Another shared parameter is the negative
air value of −1. The parameter set that maximises the stability of the structure is
almost equal to the one that minimizes the received damage. Only the Cutoff Point
is 0.5 compared to the 0.8 of the smallest damage.

The parameter set that minimizes the total amount of destroyed blocks doesn’t
necessarily correlate with the stability of the structure. The accumulated damage of
this set is the highest, and the percentage of stable structures is the lowest. This is
supported by the fact that it has the lowest amount of blocks compared to the other
sets.

102.86

6.42 12.01
3.86 5.09

56.37

77.43

5.29 8.57 3.84 5.1

37.51

220.98

4.74

29.75 3.81 5.01

71.16

Damage Is Stable # Total Blocks Destroyed Height Width # Block
0

50

100

150

200

Maximizing Height Maximizing Width Maximizing amount of Blocks

Figure 5.20: Collected data of the parameter sets in the second group, which searches
for different structure metadata characteristics. The set that maximises
the height (blue), the set that maximizes the width (red) and the set
that maximizes the total amount of blocks (green).

The effect of optimizing towards specific structure characteristics is visualized in
Figure 5.20. The optimized characteristics are the structure dimensions and the total
block amount of the structure. Most notable is that with more blocks, the average
amount of damage and destroyed blocks rises significantly. This effect is explained
later when looking at the combine layers parameter. Also relatively noticeable
is that the parameter set that optimizes for width uses the custom kernel scale

Frederic Abraham 76

5 Results 5.3 Quantitative Evalutation Results

compared to the set that optimizes for height which results in the less destroyed
blocks.

5.3.1.2 Parameter Compare

Instead of searching for a parameter set that optimizes for a structure characteris-
tic, this section compares the effects of the parameters of the confidence decoding
algorithm. This section reviews the following parameters:

• Combine layers - Whether the layers are decoded independently or squashed
into one layer.

• Block scaling - The prefered selection of horizontal rectangle blocks.

• Negative air value - The negative scaling of the numerical air value.

• Cut of point - The clipping of how well a block fits into the contour.

The data in each bar chart averages all collected data of all tested parameter sets
with the respective parameter value set to the respective value. The evaluation
application visualized in the appended Figure A.18 provides the feature to search
for the structure that maximises the difference of a selected data point when it is
decoded with the respective parameter turned on or off.

0 50 100

0

25

50

75

100

125

0

1

2

3

4

5

6

7

8

9 1011

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

Damage 112.0

0

1

2

3

4

5 6

7

8 9

10

11

12

13

14

15

16

17

18

1920
21

22

2324

2526

27

28

29

30

31

32

33

34

35

36

37

38

3940 41

42

43

Damage 855.0

Figure 5.21: The structure that maximises the damage difference when the combine
layers parameter is turned on (left) and when the combine layers
parameter is turn off (right).

For example, Figure 5.21 visualizes the structure that maximises the damage when
the combine layer parameter is turned on and when it is turned off. It becomes
clear that there are structures that have overlapping blocks in different layers, which
result in a lot of damage when the layers are decoded independently. Reducing the
layers into one layer results in a more stable structure as the decoding algorithm
prohibits overlapping blocks that result in complications.

Frederic Abraham 77

5 Results 5.3 Quantitative Evalutation Results

67.97

9.28 7.28 3.75 4.84

22.92

88.06

8.94 10.43 3.77 4.95

32.87

Damage Is Stable # Total Blocks Destroyed Height Width # Block
0

10

20

30

40

50

60

70

80

90

Value: True Value: False

Figure 5.22: Graph that compares the data with both states of the combine layers
parameter.

Averaging the data of all tested structures, displayed in Figure 5.22, also shows
that the flattened decoding process produces marginally more stable structures
than decoding each layer independently but results in significantly less damage
and fewer destroyed blocks. This also means that the uncertainty through the
different layers of the GAN has to be compensated through the decoding pro-
cess.

69.34

10.19 7.64 3.76 4.91

27.53

86.69

8.03 10.08 3.76 4.89

28.26

Damage Is Stable # Total Blocks Destroyed Height Width # Block
0

10

20

30

40

50

60

70

80

90

Value: True Value: False

Figure 5.23: Graph that compares the data with both states of the block scaling
parameter.

The previous assumption that the block scaling positively influences the sta-
bility of a structure is supported by reviewing the direct comparison in Fig-
ure 5.23. Less damage has been done, and a higher percentage of structures is
stable.

Frederic Abraham 78

5 Results 5.3 Quantitative Evalutation Results

84.32

8.8

9.72

3.75 4.88

28.87

79.53

8.99

9.07

3.75 4.89

28.21

78.22

8.98

8.89

3.76 4.89

27.83

75.37

9.38

8.53

3.77 4.91

27.1

72.63

9.38

8.07

3.78 4.92

27.46

Damage Is Stable # Total Blocks Destroyed Height Width # Block
0

10

20

30

40

50

60

70

80

Value: -10 Value: -5 Value: -2 Value: -1 Value: 0

Figure 5.24: Graph that compares the data created with the different states of the
negative air value parameters.

Reviewing the effect that different values of negative air have in Figure 5.24 shows
that having no negative air results in less damage. As shown in the section where the
individual parameter was introduced, having negative air results in more decoded
blocks. Also, no negative air and a negative air of -1 resulted in equal amounts of
stable structures.

0 50 100

0

50

100

0 12
3

4 5
67 8

9
1011
1213

1415

16

1718

19

20

Value -10

0 1
2

34 5
67 8

9
1011
1213

1415

16

1718

19

20

Value -5

01
2

3 4
5

6
78 9

1011 12
131415 16

17

1819

20

21

Value -2

01
2

3 45
6 78 9

1011 12
131415 16

17

1819

20

21

Value -1

01
2

34
5 6

7 8 910 1112

13
14

15 1617
18

1920

21

22

Value 0

Figure 5.25: A structure decoded with different negative air values.

Having a higher negative air value means that bigger blocks that would not cover
the contour as well as smaller blocks, are less likely to be chosen. In Figuer 5.25, it

Frederic Abraham 79

5 Results 5.3 Quantitative Evalutation Results

can be seen that the decoding with a air value of 0 uses a big block to bridge the
gap resulting in a more stable structure compared to the decodings where better
fitting blocks were selected.

98.64

8.3

11.79 3.79 4.94

36.05

70.91

10.35 7.86 3.78 4.92

25.09

66

9.73 7.23 3.74 4.88

23.88

76.5

8.04 8.54 3.73 4.85

26.56

Damage Is Stable # Total Blocks Destroyed Height Width # Block
0

20

40

60

80

100

Value: 0.1 Value: 0.5 Value: 0.8 Value: 0.95

Figure 5.26: Graph that compares the data created with the different states of the
cut of point parameters.

Comparing the different cutoff values visualized in Figure 5.26 shows that the cut-
toff value of 0.1 leaves more blocks but at points that do not help with the stability
of the structures. Removing too many possible block positions, as a high value of
0.95 does, also resulted in more damage and less stable structures. On the one hand,
the parameter set with a cutoff value of 0.8 (red) resulted in the most stable levels,
while the parameter set with a value of 0.5 (green) resulted in less damage in the
structures. this shows that the selection of a "good" cutoff point is not straightfor-
ward.

0 50 100

0

50

100

01
2

34
5 6 7

8 9 1011 1213

14
15

1617

1819

20

21

Value 0.1

01
2

34
5 6 7

8 9 1011 1213

1415

1617

1819

20

21

Value 0.5

01
2

34
5 6

7 8 910 1112

13
14

15 16 17
18

1920

21

22

Value 0.8

01
2

3

4 5 67 8 9
10

11
12 13

14 15
16

171819
20

2122

23

24

Value 0.95

Figure 5.27: A structure decoded with different cutoff points.

Frederic Abraham 80

5 Results 5.3 Quantitative Evalutation Results

Along similar lines, why a negative air parameter closer to zero positively influ-
ences the structure stability, a smaller cutoff value also has a positive influence. A
strict cutoff at high values removes the probability of bigger blocks. In Figure 5.27,
it can be seen that the value of 0.95 results in many small blocks that are un-
supported. Moving down towards lower cutoff values introduces more supporting
blocks.

The results of the last two parameters, the round to next integer and the use of
a minus-one border, are attached in Figure A.19 and Figure A.20 respectively.
Rounding to the next integer produced more stable structures while using a minus-
one border in less stable structures.

5.3.2 Quality Search

This section accumulates all the previous results of the best encoding approach and
decoding parameter set with the best GAN architecture and training algorithm. It
visualizes various generated, stable structures and reviews some accumulated data
over the generated structures. All presented structures show the originally produced
structure representations and their respective decoding created through the confi-
dence decoding.

Overall, 8000 structures are generated, decoded and simulated in this experiment.
The overall creation process was split into 20 iterations and took roughly 25 min-
utes. Of the 25 minutes, only 14 seconds were used for generating the structure
representations, the decoding process took 13 minutes, and 12 minutes were used in
the simulation of all structures. The parameter set that has been used is the one that
maximizes the stability of the structures as obtained from the prior Characteristic
Search approach in Section 5.3.1.1.

Of the 8000 structures, only 945 are stable, as detected by the velocity method in the
simulation, while 7055 are unstable. On the other hand, an unstable structure is not
necessarily collapsed. One could assume that in a collapsed structure, at least one
block would receive so much damage that it gets destroyed. Of the 8000 structures,
a significant amount of 3487 structures have no destroyed blocks, while 4533 have at
least one destroyed block. This hints towards imperfect structures that move slightly
initially but do not collapse completely.

The first generated structure, visualized in Figure 5.28, is the one which is stable and
uses the most blocks in its structure. It can happen that a structure does not contain
any enemies, as attached in Figure A.21a, which would result in a not playable level.

Frederic Abraham 81

5 Results 5.3 Quantitative Evalutation Results

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) Flattend structure representation
0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

(b) Decoding

Figure 5.28: Generated structure that maximizes the amount of generated blocks.

More varied stable structures with that maximize the number of blocks are attached
in Figure A.21.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) Flattend structure representation
0 50 100 150 200 250 300

0

20

40

60

80

100

120

(b) Decoded

Figure 5.29: Generated structure that has a lower profile.

A low-profile example is given in Figure 5.29. This approach is able to generate a
variety of low-profile structures with different amounts of layers. Even asymmetric
structures are generated, in contrast to the original structure generator, used to
create the data set as in Figure A.23. A structure just like the one of the first initial
Simple GAN approach of Section 5.1.1, with only one layer of rectangle blocks, is
also generated and appended in Figure A.24.

Frederic Abraham 82

5 Results 5.3 Quantitative Evalutation Results

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) Tower representation 1
0 50 100 150

0

50

100

150

200

250

300

350

(b) Decoded 1
, 0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c) Tower representation 2
0 50 100 150

0

50

100

150

200

250

300

(d) Decoded 2

Figure 5.30: Generated structure in a tower structure.

The structures shown in this section in Figure 5.30 are tower-like structures. This
shows that the generator is also able to create stable structures with a certain height
without relying on stacking many blocks on top of one another. The right tower
structure in Figure 5.30c shows that a structure representation with low confidence
with half-created blocks can result in different structures than the GAN originally
intentioned.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a)
0 50 100 150 200 250 300 350

0

25

50

75

100

125

150

175

200

(b)
, 0 20 40 60 80 100 120

0

20

40

60

80

100

120

(c)
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

(d)

Figure 5.31: Most common stable structures.

The last set of generated structures in Figure 5.31 shows the most commonly gen-
erated stable structure architecture. A wider base narrows down into a peak of only
one or two blocks. This architecture shows the influence of the original structure
generator used to create the data set. Different structures optimized for various
parameters are appended in Section A.7.2.

When comparing stable structures versus unstable structures, visualized in Fig-
ure 5.32, it can be seen that even the stable structures received a little bit of dam-
age, but no blocks were destroyed. The metadata characteristics are relatively equal
when comparing the two structure groups.

Frederic Abraham 83

5 Results 5.3 Quantitative Evalutation Results

3.5
0

3.61
4.82

20.94

0.81

61.74

6.36 3.67
4.88

21.29

0.81

Damage # Total Blocks Destroyed Height Width # Block Height width ratio
0

10

20

30

40

50

60

Stable Levels Unstable Levels

Loading [MathJax]/extensions/MathMenu.jsFigure 5.32: Comparing the collected structure data of stable structures vs unstable
structures.

57.56

5.7 1.86 5.16

11.79

0.37

56.24

5.59 4.43 4.75

25.25

0.99

Damage # Total Blocks Destroyed Height Width # Block Height width ratio
0

10

20

30

40

50

60
Structures smaller than 3 Structures Taller than 3

Loading [MathJax]/extensions/MathMenu.jsFigure 5.33: Comparing the collected structure data of stable structures vs unstable
structures.

One could assume that most stable structures are shallower, such as the structures
in Figure 5.29, compared to the unstable structures. The bar chart of Figure 5.33
visualizes the groups of structures smaller and taller than 3. Contrary to the as-
sumption that smaller structures are more stable, the amount of received damage
and the number of destroyed blocks are almost equal. While the smaller structures
are created from fewer blocks and have a lower height-width ratio, and are on average
even wider than the taller structures.

Frederic Abraham 84

6 Discussion & Conclusion

In this chapter, the individual design decisions and how suitable they were to-
wards generating stable structures are reviewed in the discussion section 6.1. Fol-
lowed by summarising the work of this thesis in the conclusion 6.2 section with
an outlook on possible future work which could extend the generating capabili-
ties.

6.1 Discussion

From the first step of generating a structured data set to evaluate the last step of
decoding a generated structure representation, many design decisions have to be
made. We have seen in the results section that some resulted in a better working
structure generation while others produced big block piles. The four most crucial
parts are the GAN architecture and its training algorithm, the structure encoding
and the decoding algorithm.

First, a brief overview of the capabilities and difficulties in the selection of GAN
architectures and the training algorithm is given in this section. Then a review
of the implemented encoding and decoding methods and their advantages and
disadvantages with insight into why the One-element encoding yielded no results
is given. Finally, a brief discussion of the implemented decoding algorithms is
given.

6.1.1 GAN architectures

We have seen that different GAN architectures in combination with the train-
ing algorithm resulted in significantly different results. Training the shallower
Simple-GAN architectures, even though they have more trainable parameters com-
pared to the deeper Convolutional-GANs, resulted in no usable structure genera-
tor.

Frederic Abraham 85

6 Discussion & Conclusion 6.1 Discussion

As mentioned in Section 2.3.2, a major challenge of GAN training is the possibility of
mode collapse, which both models that were trained using Goodfellow et al. (2014)
training algorithm did. On the other hand, only switching to the state-of-the-art
WGAN-GP training algorithm, without changing the GANs architecture, produced
no good results. The diversity of the produced representations went up while the
respective quality went down.

It is also the case that the choice of the encoding method, or to be more pre-
cise, the data representation itself, should influence the architecture of the GANs
generator and training algorithm. This can be seen in every training iteration
that used the One-Element encoding and is further discussed in the next Sec-
tion 6.1.2.

With all these factors that need to be considered, the fact that there are two neu-
ral networks that require a different composition of layers and activation functions
and the overall difficulty of training the two networks make GAN a difficult choice
for content generation. This is enhanced by the content’s reliance on a perfect rep-
resentation. Any small imperfection, for example, overlapping blocks in different
layers with the Multilayer-Visual encoding or too closely positioned blocks in any
One-Element encoding, results in an unstable structure.

Another factor that comes on top of this is that training a GAN requires a lot of
hardware resources as they rely on a small learning rate (Radford et al. 2015) and
that the generator is trained through the discriminator indirectly. This limits the
number of doable training iterations that can be done in a given time frame. Only
the access to the high-performance computing cluster enabled the training of the 11
different models.

6.1.2 Encoding

All introduced encoding methods, depending on the used grid size, can represent
a stable structure. They differ functionally only in their capability to work as a
training base to be recreated by the GAN. On the one hand, the encoding methods
can be grouped into the usage of different value ranges and, on the other hand, how
the information is encoded.

In the first group, the different value ranges refer to either using the One-Hot value
range of [0, ..., 1], which represents either on or off, or an arbitrary value range in the
Single-Layer encoding, in which every different value represents a different kind of
information. Using the One-Hot encoding, when it comes to encoding information
which needs to be persistent and reliable in its local vicinity, is more practical, as it

Frederic Abraham 86

6 Discussion & Conclusion 6.1 Discussion

can be interpreted as a confidence value. A higher value means more confidence in
the result of the model, while in the Single-Layer approach, a higher value probably
means different information. This is most important in the decoding process, where
consistent data is required.

The other differentiation, how the information is encoded, aims at the Visual and
One-Element encoding types. It has been shown that CNN are good at image pro-
cessing due to their positional invariance and other capabilities to learn abstract
structural information. When using the One-Element encoding, a transposed con-
volutional filter had to learn the task of placing a high-value pixel into a position
that is surrounded by only zeros. With the way that transposed convolutional fil-
ters work, this task seems to be difficult. Adding the fact that the DCGAN uses
only two-strided transposed convolutional layers means the layer had to interpolate
between pixels and isolate a single pixel in the same step.

With the large amount of zero space in the One-Element representations, it could
be the case that more filters learned to remove the values. This, and the previous
problem, would explain why models that trained on the One-Element encodings that
did not use the One-Hot encodings mainly produced blocks in the first material range
and only rarely any higher values. Adding the previously made observation that the
models that used the One-Element/One-Hot encoding mostly had high confidence
values right next to one another supports the claim that transposed convolution
cant isolate and interpolate pixels in the same layer.

6.1.3 Decoding

As previously discussed, encoding all information into one layer results in problems
with noise and confidence decoding. Using multiple layers and decoding them in-
dependently evidently has its own problems, as shown in the grid search results in
Section 5.3.1.2. The encoded pixels overlap in different layers and interfere with one
another in the decoding process. Adding more correction steps into the decoding
process can be seen as a tradeoff between the direct expressivity of the model and
a more stable structure.

The two implemented decoding algorithms have both their advantages and dis-
advantages. In its raw form, the Recursive-Rectangle algorithm assumes a perfect
structure representation and is almost completely unusable with the noisy out-
put representations of the GANs. While the Confidence-Decoding greedily selects
blocks linearly that fit into the contour of the structure representation. It has been
shown that this approach only produces the encoded structure representation with

Frederic Abraham 87

6 Discussion & Conclusion 6.2 Conclusion

a very specific set of parameters that are not applicable to the generated represen-
tations.

Again a combination of both algorithms could improve the overall stability. The
“recursive block selection” that ensures the given encoded silhouette is filled com-
pletely in combination with the confidence-based block positions, which can, given
a noisy encoding, find plausible possible block positions.

6.2 Conclusion

Concluding the thesis with a brief summary and thoughts on the main research
goals of this thesis, whether GANs can be utilized for stable structure generation in
a physics-based simulation. Reviewing the research questions and answering them
directly and ending on an outlook of what future research on this topic could in-
clude.

Initially, an overview of different techniques in procedural content generation, in
particular the ones that use machine learning, is given in the related research chap-
ter. As this thesis focused on content generation utilizing the GAN networks, the
first section explains how GANs function with their initial training process, their
difficulties and how the state-of-the-art training algorithms work and circumvent
previous problems. The second related research section focuses on the content gen-
eration that uses GANs and the algorithm that generate structures in the same
science birds domain with different approaches.

The main contribution of this thesis is the developed encoding and decoding meth-
ods for the difficult domain of real-valued science bird structures. When combining
the two different Visual encodings and the One-Element encoding with the different
Multilayer representations, a total of 10 distinct encodings can be created. Further,
two decoding algorithms for the ambiguous visual encoding have been introduced,
with both having their respective advantages and disadvantages. Lastly, the pro-
posed training framework can combine different GAN architectures with different
training algorithms.

In order to train 11 GAN networks, various datasets have been created with differ-
ent characteristics and using a structure filtering process. The open-source science
bird implementation had to be extended to allow for fast structure evaluation and
data collection required in the parameter search for the decoding algorithm and
the quality-based search for stable structures. Also, an application was implemented
to interact with the GAN models and decoding algorithms to test various edge
cases.

Frederic Abraham 88

6 Discussion & Conclusion 6.2 Conclusion

In the result Section, it has been shown that a careful selection of GAN architec-
ture, training algorithm, encoding representation and decoding parameters resulted
in a generator capable of creating stable and diverse structures. The decoding pa-
rameters have been tested using a grid search, and the results provided insight into
the advantages of the different representations. Even though the generator is able
to generate stable structures, it mostly generates unstable structures that fall over
when put into the simulation. This is due to errors in the decoding algorithm or
noise in the generated encoding.

Overall using GANs to generate structures that require the perfect positioning of
blocks to be stable is doable but difficult. In order to see the results of a minute
change requires a full training iteration, and the associated time and computing ca-
pacity, combined with the number of parameters distributed over the whole process,
lengthens the development process using GANs.

6.2.1 Research questions answered

In this section, the initially asked research question are reviewed and an-
swered.

Question: In the domain of a 2D physics-based real-valued block simulation, how
can a structure be encoded into a data representation capable of being used in the
training process of a GAN?
Answer: As shown in the concepts chapter, every path in the encoding block of
the flowchart in Figure 3.1 results in 10 different structure encodings. While the
visual encoding approaches come with the ambiguity of what exact blocks cre-
ate the original structure, they result in a more solid base for training the GANs
compared to the always decodable One-Element encodings, which a susceptible to
noise.

Question: Given the encoding of a structure, how can it be decoded into a usable
structure representation?
Answer: Depending on the chosen encoding method, the One-Element encoding,
which encodes each possible block individually, can be decoded directly, while the
visual encoding that uses the block’s dimension requires a more complex decoding
process. For the visual encodings, two algorithms have been presented. The more
precise Recursive Rectangle Decoding requires a perfect structure representation
and the greedy linear confidence decoding, which is less susceptible to a noisy en-
coding.

Frederic Abraham 89

6 Discussion & Conclusion 6.2 Conclusion

Question: What GAN architectures, training algorithms, encoding and decoding
parameter compositions are usable for training and generating stable structures?
Answer: By testing two GAN architectures, it has been shown that a deeper con-
volutional architecture generates cleaner structure representation. The initially in-
troduced training algorithm has a tendency to mode collapse, while the more stable
WGAN algorithm creates more variety. It has been shown that not all encoding
approaches are usable with the presented GAN architectures. Only the multilayer
visual encoding consistently produces decodable structure representations that re-
sult in a stable structure. A major factor for the decodability of a representation
is that the value range for each layer represents a confidence value and is not a
mapping to different block types. Encoding the air as a distinct layer into the rep-
resentation increases the decodability even further as it removes the requirement of
a value threshold.

Question: Are GANs suitable for generating stable structures in a 2D physics-based
block domain?
Answer: While facing many challenges, in general, it is possible to use GANs to
create stable structures in the 2D physics-based block domain.

6.2.2 Future Work

The latent space of the generator could be further analysed either through the
aforementioned LVE, similarly to Volz et al. (2018) work, or by incorporating the
discriminator’s output into the structure selection process. While the output of the
discriminator is, in most cases, not usable without a reference frame. This could be
created by reviewing the stability properties of generated structures in combination
with the discriminator’s output.

Regarding the implemented encodings, various aspects of how information can be
represented could be done differently. With the difficulty of the One-Element encod-
ing to isolate single pixels, using more pixels would presumably already help with
this problem. A combination of the One-Hot encoding with the Visual-encodings,
where multiple pixels represent a block, removes any uncertainty about which block
is placed in any given location. Using multiple pixels to represent a block would
still require a proper block selection in the decoding algorithm that combines pixels
belonging to the same block.

Instead of appending on the rasterized, image synthesis-based encodings, completely
different data representations could be investigated. As discussed in the different
GAN applications, different data structures can be generated, even though image

Frederic Abraham 90

6 Discussion & Conclusion 6.2 Conclusion

synthesis is the most researched. This means different encodings could be investi-
gated that use other data structures that work better with the real-spaced position-
ing compared to the difficulty of rasterising in the proposed visual and One-Element
encodings.

Lastly, because GAN work with every kind of NN, future research can be done with
every application that uses deep neural networks. Various different compositions
of, for example, convolutional layers, activations, normalising layers or the use of
residual connections in both the generator and discriminator, can be tested. Fur-
ther, the use of entirely different GAN architecture, for example, the Conditional
GAN, that uses an extra parameter to gain control over the GAN output, could be
evaluated.

Frederic Abraham 91

List of Figures

1.1 An example structure from angry birds.1 5
1.2 The available blocks in Science Birds are separated into regular and

irregular blocks. 6

2.1 Overview of a generative adversarial network 10
2.2 A partial mode collapse of a GAN trained on the MNIST2dataset,

which is a hand drawing dataset of numbers. Visualized on the right
is a two-dimensional projection of the input latent space Z, which
shows that a majority of the latent space vectors are mapped to the
drawing of a one. The graphic is created by Tran et al. (2018). . . . 12

2.3 The architecture of a DCGAN generator that creates a 64x64 image.
Visualization of the network is created by Radford et al. (2015) . . . 14

2.4 A artificial example in which two optimal trained discriminators/crit-
ics, trained to differentiate two Gaussians, calculate gradients. The
graphic is created by Arjovsky et al. (2017) 15

2.5 Different GAN architectures in the task of face synthesis. From left to
right: (1) The Original GAN Paper (Goodfellow et al. 2014). (2) First
use of Deep Convolution Networks (Radford et al. 2015). (3) Using a
joint distribution training task (Liu and Tuzel 2016). (4) Progressive
training of Generator and Discriminator (Karras et al. 2017). (5) In-
corporates style transfer architecture in generator (Karras et al. 2018). 18

2.6 The layers required for recreating a doom level. The level representa-
tions are generated by Giacomello et al. (2018). 19

2.7 Process of transforming a Mario level into a One-Hot, multi-
dimensional level representation used by MarioGAN. The 32×32×10
matrix, on the bottom right, is filled with zeros except x, y coordinate
on the layers of the blocks visible in the selected window. 20

2.8 The level encoding defined by Ferreira and Toledo (2014) used blocks
and predefined structures in arrays of columns. For example, the block
ID 22 represents a pig. Visualization made by Ferreira and Toledo
(2014). 21

Frederic Abraham 92

List of Figures List of Figures

2.9 A structure generated by Stephenson and Renz (2016a) which shows
the block placements and how the structure can be represented as an
acyclic graph. Visualization by Stephenson and Renz (2016a). 22

2.10 Flowchart of the proposed approach by Tanabe et al. (2021). The
chart is a recreation based on their provided Flowchart. 23

3.1 Flow chart of the encoding decoding process with all possible design
decisions. The number in each block references the section which ex-
plains the respective subject. 24

3.2 Original test structure as wireframe coloured by material. 25
3.3 Structure visualization with different raster sizes. 27
3.4 Encode the test structure using a grid of dots to determine the value

of each tile. 28
3.5 The same block encoded in two different dimensions. 28
3.6 Comparing the two structure encodings and visualising their difference. 29
3.7 Visualizing the ambiguity of the visual encoding. 29
3.8 The test structure in one element encoding. 30
3.9 Expanding the test structure to encode over multiple layers. The z-

axis represents the layers and is scaled for visualization purposes. . . 31
3.10 One Element encoding in multiple layers. 32
3.11 Expanding the test structure to encode over multiple layers. 32
3.12 The images show the trivial case of the whole decoding process of the

first wood layer visualized in purple. 34
3.13 Steps in finding possible rectangles. 35
3.14 Selected rectangles through the Algorithm 3.2 and their filtered ver-

sion for eligibility. 36
3.15 The first result of the more complex shapes in the test structure. . . . 38
3.16 The second more complex result of the shape in the test structure,

which includes wrong rectangle selection and block stacking. 39
3.17 Finished decoding result. 40
3.18 Matrix (each image represents a layer) represents the hit probability

and size ranking. The first value in the tile of an image represents
the highest hit probability while the second value is the highest size
ranking of the respective block. “Vert” marks the block type rotated. 41

3.19 Layer-wise multiplication of the Hit Probability matrix and Size
Ranking matrix creates the selection ranking. A clipping parameter p

controls how well each block has to fit into the space and creates the
clipping matrix with valid pixels to choose from in the block selection. 42

Frederic Abraham 93

List of Figures List of Figures

3.20 Exemplary three matrices that show the delete matrix used to remove
the invalid pixels. The selected block is marked in the centre. 42

3.21 Three selected iterations in the selection process and which pixels are
removed in the process. 43

3.22 Result of the decoding process (a) without recalibrating and (b) with
recalibrating. 44

3.23 The effect of using block type scaling on the sum kernel. 44
3.24 The effect of using a minus one border around the sum kernel. 45
3.25 Using a negative air value to encourage better block positioning. . . 45
3.26 Clipping the size ranking matrix at different hit probability values. . 46
3.27 Flow diagram of the training algorithm with interchangeable GAN

Model and “Train Stepper”. 47

4.1 Hand-created level with multiple structures and their grouping by
colour. 49

4.2 Filtering by searching for similar structures 51
4.3 Unifying the structure diversity and creating a more equal amount of

levels with different heights in the second dataset. 51
4.4 Layers of a generator from the first set of GANs. 54
4.5 Layers of a discriminator from the first set of GANs. 54
4.6 Fully convolutional generator based on the DCGAN. 55
4.7 Critic that only uses convolutional layers 55
4.8 Test level used to evaluate encoding/decoding behaviour of different

encoding/decoding algorithms. 57
4.9 The decoding of the smiley used to visualize the drawing capabilities

of the Level Drawer application. 59
4.10 The whole testing application with individual sections marked

through coloured rectangles. 60

5.1 Structure generated with the Simple GAN architecture. 62
5.2 Structures generated with the Simple GAN architecture and a filtered

dataset. 62
5.3 Structures generated with the Simple GAN architecture, filtered

dataset and the WGAN training algorithm with a stochastic gradient
descent optimizer. 63

5.4 Structures generated with the Simple GAN architecture, filtered
dataset and the WGAN training algorithm with a Adam optimizer
over 15000 epochs. 64

Frederic Abraham 94

List of Figures List of Figures

5.5 The generated structure representation trained on the One-Element
encoding once in the normalized data space (a) and once in the orig-
inal data space (b) rounded to the next integer. 65

5.6 The structure of Figure 5.5 decoded into individual blocks. 66
5.7 Generating more examples of the Single-Layer One-Element Encoding. 66
5.8 A structure representation generated in the One-Element multilayer

encoding. 67
5.9 Visualizing the decoding and simulation of the One-Element Multi-

layer representation of Figure 5.8 . 67
5.10 A structure generated in the True-One-Hot encoding using the con-

volutional GAN with the WGAN training method. The layers are
clipped at 0.7. 68

5.11 The same structure representation of Figure 5.10 clipped at different
value thresholds . 69

5.12 Visualizing the problem with a high clipping parameter. 69
5.13 Another generated structure in the True-One-Hot encoding, clipped

at two different thresholds . 70
5.14 Using the small true one hot encoding with the extra air layer. 71
5.15 A structure in the multilayer visual representation and its layers. . . . 72
5.16 The generated structure of Figure 5.15 decoded using the confidence

decoding and send to the simulation. 72
5.17 Three structures in the multilayer visual representation with lower

quality. 73
5.18 The layers of a structure in the representation that uses an explicit

air layer. 74
5.19 Collected data of the parameter sets in the first group that optimize

for the smallest damage (blue), most stable (red) and least destroyed
blocks (green). 75

5.20 Collected data of the parameter sets in the second group, which
searches for different structure metadata characteristics. The set that
maximises the height (blue), the set that maximizes the width (red)
and the set that maximizes the total amount of blocks (green). . . . 76

5.21 The structure that maximises the damage difference when the com-
bine layers parameter is turned on (left) and when the combine
layers parameter is turn off (right). 77

5.22 Graph that compares the data with both states of the combine lay-
ers parameter. 78

5.23 Graph that compares the data with both states of the block scaling
parameter. 78

Frederic Abraham 95

List of Figures List of Figures

5.24 Graph that compares the data created with the different states of the
negative air value parameters. 79

5.25 A structure decoded with different negative air values. 79
5.26 Graph that compares the data created with the different states of the

cut of point parameters. 80
5.27 A structure decoded with different cutoff points. 80
5.28 Generated structure that maximizes the amount of generated blocks. 82
5.29 Generated structure that has a lower profile. 82
5.30 Generated structure in a tower structure. 83
5.31 Most common stable structures. 83
5.32 Comparing the collected structure data of stable structures vs unsta-

ble structures. 84
5.33 Comparing the collected structure data of stable structures vs unsta-

ble structures. 84

A.1 Art generated by me using the DALL-E 2 (Ramesh et al. 2022) model.105
A.2 Generated Art created using Midjourney3by Jason M. Allen that won

the Colorado State Fair Fine Art competition in the digital arts cat-
egory. 106

A.3 The specific shape shows how inner corners, as calculated in lines 4
to 9 of the Algorithm 3.1, are required in the decoding process. If this
specific step were not present, the block in the centre would be found
or decoded. 109

A.4 Decoding case in which the original rectangle of the lower structure
is so big that the two rectangular blocks don’t fill it fully. The two
blocks are created and an extra rectangle is added to the side. 109

A.5 A bit more complex example of the selection process. It can be seen
that the selection selects big blocks in the centre first, which results
in wrong paths. 110

A.6 Example level from the Small Dataset with multiple structures. . . 110
A.7 Example level from the Big Dataset. 111
A.8 Example level from the Wood Dataset. 111
A.9 The drawing area when the One element encoding is selected shows

that the important pixel is marked in a light colour. Only the lighter
colour pixels get used in the decoding shown to the right. 112

A.10 Window that opens when the confidence decoding button is clicked.
It can be used to set the parameters through reflections. 112

Frederic Abraham 96

List of Figures List of Figures

A.11 The confidence in the block below is not high enough so that rounded
to the next integer it is closer to zero and removed from the rounded
representation. 113

A.12 Levels generated with the Simple GAN architecture and a filtered
dataset with the WGAN training algorithm. 113

A.13 Levels generated with the Simple GAN architecture, filtered dataset
and the WGAN training algorithm with a Adam optimizer over 15000
epochs. 114

A.14 The decoded structures of the Single-Layer One-Element encoding
shown in Figure 5.7a and Figure 5.7b 115

A.15 More examples of the model using the smaller One-True-Hot encoding
trained on the convolutional WGAN architecture. 116

A.16 More examples of the multilayer structure without air where all layers
are visualized. 117

A.17 One more good example of the multilayer encoding. 117
A.18 Application which is written for evaluating the grid search data. . . . 118
A.19 Graph that compares the data with both states of the “round to next

integer” parameter. Using rounded values results in a more stable level.119
A.20 A structure decoded with both states of the Minus-One-Border.

Using a minus one border results in less stable levels and more damage.119
A.21 Generated structures based on maximising the block amount. 120
A.22 Generated structures based on maximising the structure height while

minimising the structure width. 120
A.24 Generated structures based on minimizing the structure height. . . . 120
A.23 Generated structure that has a lower profile and is asymmetric. . . . 121
A.25 Generated stable structures based on maximising the number of pigs. 121

Frederic Abraham 97

List of Tables

2.1 Comparing the gradients for discriminator/critic and generator for
the original GAN and Wasserstein GAN (Hui 2018). 16

A.1 Table that lists each science bird block and their names. 107
A.2 The table shows different grid sizes and the quotient of each distinct

block dimension divided by the size. The max / average remainder
is the respective value of the numbers behind the dot. The row with
a grid size of 0.07 shows that the divisions are closest to the lower
integer, indicated by a good average and maximum. 108

A.3 Table that visualizes the best parameter set for the respective char-
acteristic. 118

Frederic Abraham 98

Bibliography

Amato, Alba. 2017. “Procedural Content Generation in the Game Industry.” In
Game Dynamics: Best Practices in Procedural and Dynamic Game Content
Generation, edited by Oliver Korn and Newton Lee, 15–25. Cham: Springer
International Publishing. isbn: 978-3-319-53088-8. https://doi.org/10.1007/
978-3-319-53088-8_2.

Arjovsky, Martin, and Léon Bottou. 2017. “Towards Principled Methods for Training
Generative Adversarial Networks.” arXiv.org, https://doi.org/10.48550/arXiv.
1701.04862.

Arjovsky, Martin, et al. 2017. Wasserstein GAN. https://doi.org/10.48550/ARXIV.
1701.07875.

Ba, Jimmy Lei, et al. 2016. Layer Normalization. https://doi.org/10.48550/ARXIV.
1607.06450.

Basodi, Sunitha, et al. 2020. “Gradient amplification: An efficient way to train deep
neural networks.” Big Data Mining and Analytics 3 (3): 196–207. https://doi.
org/10.26599/BDMA.2020.9020004.

Bontrager, Philip, et al. 2017. DeepMasterPrints: Generating MasterPrints for Dic-
tionary Attacks via Latent Variable Evolution. https : / / doi . org / 10 . 48550 /
ARXIV.1705.07386.

Bradski, G. 2000. “The OpenCV Library.” Dr. Dobb’s Journal of Software Tools.

Doull, Andrew. 2015. “Procedural Content Generation Wiki Beneath Apple Manor.”
Accessed August 9, 2022. http://pcg.wikidot.com/pcg-games:beneath-apple-
manor.

. 2016. “Procedural Content Generation Wiki Rogue.” Accessed August 9,
2022. http://pcg.wikidot.com/pcg-games:rogue.

Frederic Abraham 99

https://doi.org/10.1007/978-3-319-53088-8_2
https://doi.org/10.1007/978-3-319-53088-8_2
https://doi.org/10.48550/arXiv.1701.04862
https://doi.org/10.48550/arXiv.1701.04862
https://doi.org/10.48550/ARXIV.1701.07875
https://doi.org/10.48550/ARXIV.1701.07875
https://doi.org/10.48550/ARXIV.1607.06450
https://doi.org/10.48550/ARXIV.1607.06450
https://doi.org/10.26599/BDMA.2020.9020004
https://doi.org/10.26599/BDMA.2020.9020004
https://doi.org/10.48550/ARXIV.1705.07386
https://doi.org/10.48550/ARXIV.1705.07386
http://pcg.wikidot.com/pcg-games:beneath-apple-manor
http://pcg.wikidot.com/pcg-games:beneath-apple-manor
http://pcg.wikidot.com/pcg-games:rogue

Bibliography Bibliography

Ferreira, Lucas, and Claudio Toledo. 2014. “A Search-based Approach for Generating
Angry Birds Levels.” In Proceedings of the 9th IEEE International Conference
on Computational Intelligence in Games. CIG’14. Dortmund, Germany.

Fontaine, Matthew C, et al. 2020. “Illuminating Mario Scenes in the Latent Space
of a Generative Adversarial Network.” arXiv.org, https://doi.org/10.48550/
arXiv.2007.05674.

Giacomello, Edoardo, et al. 2018. DOOM Level Generation using Generative Adver-
sarial Networks. https://doi.org/10.48550/ARXIV.1804.09154.

Goodfellow, Ian. 2017. NIPS 2016 Tutorial: Generative Adversarial Networks. https:
//doi.org/10.48550/ARXIV.1701.00160.

Goodfellow, Ian, et al. 2014. “Generative Adversarial Nets.” In Advances in Neural
Information Processing Systems, edited by Z. Ghahramani et al., vol. 27. Curran
Associates, Inc.

Goodfellow, Ian, et al. 2016. Deep Learning. Http://www.deeplearningbook.org.
MIT Press.

Gui, Jie, et al. 2021. “A Review on Generative Adversarial Networks: Algorithms,
Theory, and Applications.” IEEE Transactions on Knowledge and Data Engi-
neering, 1–1. https://doi.org/10.1109/tkde.2021.3130191.

Gulrajani, Ishaan, et al. 2017. “Improved Training of Wasserstein GANs.” CoRR
abs/1704.00028.

Hinton, Geoffrey, et al. n.d. “Neural Networks for Machine Learning Lecture 6a
Overview of mini–batch gradient descent.”

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-term Memory.” Neu-
ral computation 9 (December): 1735–80. https://doi.org/10.1162/neco.1997.9.
8.1735.

Huang, He, et al. 2018. An Introduction to Image Synthesis with Generative Adver-
sarial Nets. https://doi.org/10.48550/ARXIV.1803.04469.

Hui, Jonathan. 2018. GAN — Wasserstein GAN & WGAN-GP - Jonathan Hui -
Medium, June.

Ioffe, Sergey, and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. https://doi.org/10.
48550/ARXIV.1502.03167.

Frederic Abraham 100

https://doi.org/10.48550/arXiv.2007.05674
https://doi.org/10.48550/arXiv.2007.05674
https://doi.org/10.48550/ARXIV.1804.09154
https://doi.org/10.48550/ARXIV.1701.00160
https://doi.org/10.48550/ARXIV.1701.00160
Http://www.deeplearningbook.org
https://doi.org/10.1109/tkde.2021.3130191
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/ARXIV.1803.04469
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167

Bibliography Bibliography

Jabbar, Abdul, et al. 2020. “A Survey on Generative Adversarial Networks: Variants,
Applications, and Training.” arXiv.org, https://doi.org/10.48550/arXiv.2006.
05132.

Karras, Tero, et al. 2017. Progressive Growing of GANs for Improved Quality, Sta-
bility, and Variation. https://doi.org/10.48550/ARXIV.1710.10196.

Karras, Tero, et al. 2018. “A Style-Based Generator Architecture for Generative
Adversarial Networks.” CoRR abs/1812.04948.

Kingma, Diederik P, and Max Welling. 2013. Auto-Encoding Variational Bayes.
https://doi.org/10.48550/ARXIV.1312.6114.

Kingma, Diederik P., and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. https://doi.org/10.48550/ARXIV.1412.6980.

LeCun, Yann. 2016. “What are some recent and potentially upcoming breakthroughs
in deep learning?” Accessed August 13, 2022. https://www.quora.com/What-
are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning.

Liu, Jialin, et al. 2020. “Deep learning for procedural content generation.” Neural
Computing and Applications 33, no. 1 (October): 19–37. https://doi.org/10.
1007/s00521-020-05383-8.

Liu, Ming-Yu, and Oncel Tuzel. 2016. Coupled Generative Adversarial Networks.
https://doi.org/10.48550/ARXIV.1606.07536.

Mirza, Mehdi, and Simon Osindero. 2014. Conditional Generative Adversarial Nets.
https://doi.org/10.48550/ARXIV.1411.1784.

Moghadam, Monireh Mohebbi, et al. 2021. “Game of GANs: Game-Theoretical Mod-
els for Generative Adversarial Networks.” arXiv.org, https://doi.org/10.48550/
arXiv.2106.06976.

Nair, Vinod, and Geoffrey E. Hinton. 2010. “Rectified Linear Units Improve Re-
stricted Boltzmann Machines.” In Proceedings of the 27th International Con-
ference on International Conference on Machine Learning, 807–814. ICML’10.
Haifa, Israel: Omnipress. isbn: 9781605589077.

Radford, Alec, et al. 2015. Unsupervised Representation Learning with Deep Convo-
lutional Generative Adversarial Networks. https://doi.org/10.48550/ARXIV.
1511.06434.

Frederic Abraham 101

https://doi.org/10.48550/arXiv.2006.05132
https://doi.org/10.48550/arXiv.2006.05132
https://doi.org/10.48550/ARXIV.1710.10196
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1412.6980
https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning
https://www.quora.com/What-are-some-recent-and-potentially-upcoming-breakthroughs-in-deep-learning
https://doi.org/10.1007/s00521-020-05383-8
https://doi.org/10.1007/s00521-020-05383-8
https://doi.org/10.48550/ARXIV.1606.07536
https://doi.org/10.48550/ARXIV.1411.1784
https://doi.org/10.48550/arXiv.2106.06976
https://doi.org/10.48550/arXiv.2106.06976
https://doi.org/10.48550/ARXIV.1511.06434
https://doi.org/10.48550/ARXIV.1511.06434

Bibliography Bibliography

Ramesh, Aditya, et al. 2022. Hierarchical Text-Conditional Image Generation with
CLIP Latents. https://doi.org/10.48550/ARXIV.2204.06125.

Robbins, Herbert E. 2007. “A Stochastic Approximation Method.” Annals of Math-
ematical Statistics 22:400–407.

Salimans, Tim, et al. 2016. Improved Techniques for Training GANs. https://doi.
org/10.48550/ARXIV.1606.03498.

Saxena, Divya, and Jiannong Cao. 2020. “Generative Adversarial Networks (GANs):
Challenges, Solutions, and Future Directions.” CoRR abs/2005.00065.

Schlegl, Thomas, et al. 2017. Unsupervised Anomaly Detection with Generative Ad-
versarial Networks to Guide Marker Discovery. https ://doi .org/10 .48550/
ARXIV.1703.05921.

Schmidhuber, Jürgen. 2015. “Deep learning in neural networks: An overview.” Neural
Networks 61 (January): 85–117. https://doi.org/10.1016/j.neunet.2014.09.003.

Silver, David, et al. 2016. “Mastering the game of Go with deep neural networks
and tree search.” Nature 529, no. 7587 (January): 484–489. https://doi.org/10.
1038/nature16961.

Smelik, Ruben M., et al. 2014. “A Survey on Procedural Modelling for Virtual
Worlds.” Comput. Graph. Forum (Chichester, GBR) 33, no. 6 (September): 31–
50. issn: 0167-7055. https://doi.org/10.1111/cgf.12276.

Soille, Pierre. 2004. “Erosion and Dilation.” In Morphological Image Analysis, 63–
103. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-05088-
0_3.

Stephenson, Matthew, and Jochen Renz. 2016a. “Procedural generation of complex
stable structures for angry birds levels.” In 2016 IEEE Conference on Compu-
tational Intelligence and Games (CIG), 1–8. https://doi.org/10.1109/CIG.
2016.7860410.

. 2016b. “Procedural Generation of Levels for Angry Birds Style Physics
Games.” In Proceedings of the Twelfth AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment. AIIDE’16. Burlingame, California,
USA: AAAI Press. isbn: 978-1-57735-772-8.

. 2017. “Generating varied, stable and solvable levels for angry birds style
physics games.” In 2017 IEEE Conference on Computational Intelligence and
Games (CIG), 288–295. https://doi.org/10.1109/CIG.2017.8080448.

Frederic Abraham 102

https://doi.org/10.48550/ARXIV.2204.06125
https://doi.org/10.48550/ARXIV.1606.03498
https://doi.org/10.48550/ARXIV.1606.03498
https://doi.org/10.48550/ARXIV.1703.05921
https://doi.org/10.48550/ARXIV.1703.05921
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1111/cgf.12276
https://doi.org/10.1007/978-3-662-05088-0_3
https://doi.org/10.1007/978-3-662-05088-0_3
https://doi.org/10.1109/CIG.2016.7860410
https://doi.org/10.1109/CIG.2016.7860410
https://doi.org/10.1109/CIG.2017.8080448

Bibliography Bibliography

Stephenson, Matthew, et al. 2019. “The 2017 AIBIRDS Level Generation Competi-
tion.” IEEE Transactions on Games 11 (3): 275–284. https://doi.org/10.1109/
TG.2018.2854896.

Summerville, Adam, and Michael Mateas. 2016. Super Mario as a String: Platformer
Level Generation Via LSTMs. https://doi.org/10.48550/ARXIV.1603.00930.

Summerville, Adam, et al. 2017. “Procedural Content Generation via Machine
Learning (PCGML).” arXiv.org, https://doi.org/10.48550/arXiv.1702.00539.

Summerville, Adam James, et al. 2016. The VGLC: The Video Game Level Corpus.
https://doi.org/10.48550/ARXIV.1606.07487.

Suzuki, Satoshi, and KeiichiA be. 1985. “Topological structural analysis of digitized
binary images by border following.” Computer Vision, Graphics, and Image
Processing 30 (1): 32–46. issn: 0734-189X. https://doi.org/https://doi.org/10.
1016/0734-189X(85)90016-7.

Tanabe, Takumi, et al. 2021. “Level Generation for Angry Birds with Sequential VAE
and Latent Variable Evolution.” In Proceedings of the Genetic and Evolutionary
Computation Conference, 1052–1060. GECCO ’21. Lille, France: Association
for Computing Machinery. isbn: 9781450383509. https ://doi .org/10.1145/
3449639.3459290.

Tao, Chenyang, et al. 2018. “Chi-square Generative Adversarial Network.” In Pro-
ceedings of the 35th International Conference on Machine Learning, edited by
Jennifer Dy and Andreas Krause, 80:4887–4896. Proceedings of Machine Learn-
ing Research. PMLR, June.

Togelius, Julian, et al. 2013. “The Mario AI Championship 2009-2012.” AI Magazine
34, no. 3 (September): 89–92. https://doi.org/10.1609/aimag.v34i3.2492.

Tran, Ngoc-Trung, et al. 2018. Dist-GAN: An Improved GAN using Distance Con-
straints. https://doi.org/10.48550/ARXIV.1803.08887.

Volz, Vanessa, et al. 2018. “Evolving Mario Levels in the Latent Space of a Deep Con-
volutional Generative Adversarial Network.” In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2018). Kyoto, Japan: ACM,
July. https://doi.org/10.1145/3205455.3205517.

Wang, Hongwei, et al. 2017. GraphGAN: Graph Representation Learning with Gen-
erative Adversarial Nets. https://doi.org/10.48550/ARXIV.1711.08267.

Frederic Abraham 103

https://doi.org/10.1109/TG.2018.2854896
https://doi.org/10.1109/TG.2018.2854896
https://doi.org/10.48550/ARXIV.1603.00930
https://doi.org/10.48550/arXiv.1702.00539
https://doi.org/10.48550/ARXIV.1606.07487
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1145/3449639.3459290
https://doi.org/10.1145/3449639.3459290
https://doi.org/10.1609/aimag.v34i3.2492
https://doi.org/10.48550/ARXIV.1803.08887
https://doi.org/10.1145/3205455.3205517
https://doi.org/10.48550/ARXIV.1711.08267

Bibliography Bibliography

Wang, Yaxing, et al. 2016. “Ensembles of Generative Adversarial Networks.” CoRR
abs/1612.00991.

Xia, Bin, et al. 2020. “LogGAN: a Log-level Generative Adversarial Network for
Anomaly Detection using Permutation Event Modeling.” Information Systems
Frontiers 23, no. 2 (June): 285–298. https ://doi .org/10.1007/s10796- 020-
10026-3.

Xu, Bing, et al. 2015. Empirical Evaluation of Rectified Activations in Convolutional
Network. https://doi.org/10.48550/ARXIV.1505.00853.

Yannakakis, G. N., and J. Togelius. 2011. “Experience-Driven Procedural Content
Generation.” IEEE Transactions on Affective Computing 2, no. 3 (July): 147–
161. https://doi.org/10.1109/t-affc.2011.6.

Yu, Lantao, et al. 2016. SeqGAN: Sequence Generative Adversarial Nets with Policy
Gradient. https://doi.org/10.48550/ARXIV.1609.05473.

Frederic Abraham 104

https://doi.org/10.1007/s10796-020-10026-3
https://doi.org/10.1007/s10796-020-10026-3
https://doi.org/10.48550/ARXIV.1505.00853
https://doi.org/10.1109/t-affc.2011.6
https://doi.org/10.48550/ARXIV.1609.05473

A Appendix

A.1 Introduction

(a) A simple two dimensional block
structure, as seen from the side,
that’s structurally stable cartoon

(b) Variation of (a)

(c) A render of burger as a planet with
onion rings as ring in space infront of
a galaxy with cats

(d) A foto of a cut girl standing in a
flower field looking at a stary night
sky, abstract art

Figure A.1: Art generated by me using the DALL-E 2 (Ramesh et al. 2022) model.

Frederic Abraham 105

A Appendix A.1 Introduction

Figure A.2: Generated Art created using Midjourney1by Jason M. Allen that won
the Colorado State Fair Fine Art competition in the digital arts category.

1Midjourney AI art generation (https://www.midjourney.com/)

Frederic Abraham 106

https://www.midjourney.com/

A Appendix A.1 Introduction

A.1.1 Sciencebirds

Regular Blocks

1 SquareHole

2 RectBig

3 RectMedium

4 RectSmall

5 RectFat

6 RectTiny

7 SquareTiny

8 SquareSmall

Irregular Blocks

9 CircleSmall

10 Triangle

11 TriangleHole

12 Circle

Table A.1: Table that lists each science bird block and their names.

Frederic Abraham 107

A Appendix A.1 Introduction

A.2 Resolution table
Ta

bl
e

A
.2

:
T

he
ta

bl
e

sh
ow

s
di

ffe
re

nt
gr

id
siz

es
an

d
th

e
qu

ot
ie

nt
of

ea
ch

di
st

in
ct

bl
oc

k
di

m
en

sio
n

di
vi

de
d

by
th

e
siz

e.
T

he
m

ax
/

av
er

ag
e

re
m

ai
nd

er
is

th
e

re
sp

ec
tiv

e
va

lu
e

of
th

e
nu

m
be

rs
be

hi
nd

th
e

do
t.

T
he

ro
w

w
ith

a
gr

id
siz

e
of

0.
07

sh
ow

s
th

at
th

e
di

vi
sio

ns
ar

e
cl

os
es

t
to

th
e

lo
we

r
in

te
ge

r,
in

di
ca

te
d

by
a

go
od

av
er

ag
e

an
d

m
ax

im
um

.

R
em

ai
nd

er
W

id
th

Sq
ua

re
H

ol
e

R
ec

tF
at

Sq
ua

re
Sm

al
l

Sq
ua

re
T

in
y

R
ec

tT
in

y
R

ec
tS

m
al

l
R

ec
tM

ed
iu

m
R

ec
tB

ig
M

ax
Av

g
0.

01
85

.0
,8

5.
0

85
.0

,4
3.

0
43

.0
,4

3.
0

22
.0

,2
2.

0
43

.0
,2

2.
0

85
.0

,2
2.

0
16

8.
0,

22
.0

20
6.

0,
22

.0
0

0
0.

02
42

.5
,4

2.
5

42
.5

,2
1.

5
21

.5
,2

1.
5

11
.0

,1
1.

0
21

.5
,1

1.
0

42
.5

,1
1.

0
84

.0
,1

1.
0

10
3.

0,
11

.0
0.

5
0.

16
0.

03
28

.3
3,

28
.3

3
28

.3
3,

14
.3

3
14

.3
3,

14
.3

3
7.

33
,7

.3
3

14
.3

3,
7.

33
28

.3
3,

7.
33

56
.0

,7
.3

3
68

.6
7,

7.
33

0.
67

0.
17

0.
04

21
.2

5,
21

.2
5

21
.2

5,
10

.7
5

10
.7

5,
10

.7
5

5.
5,

5.
5

10
.7

5,
5.

5
21

.2
5,

5.
5

42
.0

,5
.5

51
.5

,5
.5

0.
75

0.
2

0.
05

17
.0

,1
7.

0
17

.0
,8

.6
8.

6,
8.

6
4.

4,
4.

4
8.

6,
4.

4
17

.0
,4

.4
33

.6
,4

.4
41

.2
,4

.4
0.

6
0.

15
0.

06
14

.1
7,

14
.1

7
14

.1
7,

7.
17

7.
17

,7
.1

7
3.

67
,3

.6
7

7.
17

,3
.6

7
14

.1
7,

3.
67

28
.0

,3
.6

7
34

.3
3,

3.
67

0.
67

0.
12

0.
07

12
.1

4,
12

.1
4

12
.1

4,
6.

14
6.

14
,6

.1
4

3.
14

,3
.1

4
6.

14
,3

.1
4

12
.1

4,
3.

14
24

.0
,3

.1
4

29
.4

3,
3.

14
0.

43
0.

08
0.

08
10

.6
2,

10
.6

2
10

.6
2,

5.
38

5.
38

,5
.3

8
2.

75
,2

.7
5

5.
38

,2
.7

5
10

.6
2,

2.
75

21
.0

,2
.7

5
25

.7
5,

2.
75

0.
75

0.
26

0.
09

9.
44

,9
.4

4
9.

44
,4

.7
8

4.
78

,4
.7

8
2.

44
,2

.4
4

4.
78

,2
.4

4
9.

44
,2

.4
4

18
.6

7,
2.

44
22

.8
9,

2.
44

0.
89

0.
31

0.
1

8.
5,

8.
5

8.
5,

4.
3

4.
3,

4.
3

2.
2,

2.
2

4.
3,

2.
2

8.
5,

2.
2

16
.8

,2
.2

20
.6

,2
.2

0.
8

0.
23

0.
11

7.
73

,7
.7

3
7.

73
,3

.9
1

3.
91

,3
.9

1
2.

0,
2.

0
3.

91
,2

.0
7.

73
,2

.0
15

.2
7,

2.
0

18
.7

3,
2.

0
0.

91
0.

31
0.

12
7.

08
,7

.0
8

7.
08

,3
.5

8
3.

58
,3

.5
8

1.
83

,1
.8

3
3.

58
,1

.8
3

7.
08

,1
.8

3
14

.0
,1

.8
3

17
.1

7,
1.

83
0.

83
0.

15
0.

13
6.

54
,6

.5
4

6.
54

,3
.3

1
3.

31
,3

.3
1

1.
69

,1
.6

9
3.

31
,1

.6
9

6.
54

,1
.6

9
12

.9
2,

1.
69

15
.8

5,
1.

69
0.

92
0.

3
0.

14
6.

07
,6

.0
7

6.
07

,3
.0

7
3.

07
,3

.0
7

1.
57

,1
.5

7
3.

07
,1

.5
7

6.
07

,1
.5

7
12

.0
,1

.5
7

14
.7

1,
1.

57
0.

71
0.

1
0.

15
5.

67
,5

.6
7

5.
67

,2
.8

7
2.

87
,2

.8
7

1.
47

,1
.4

7
2.

87
,1

.4
7

5.
67

,1
.4

7
11

.2
,1

.4
7

13
.7

3,
1.

47
0.

87
0.

32
0.

16
5.

31
,5

.3
1

5.
31

,2
.6

9
2.

69
,2

.6
9

1.
38

,1
.3

8
2.

69
,1

.3
8

5.
31

,1
.3

8
10

.5
,1

.3
8

12
.8

8,
1.

38
0.

88
0.

26
0.

17
5.

0,
5.

0
5.

0,
2.

53
2.

53
,2

.5
3

1.
29

,1
.2

9
2.

53
,1

.2
9

5.
0,

1.
29

9.
88

,1
.2

9
12

.1
2,

1.
29

0.
88

0.
15

0.
18

4.
72

,4
.7

2
4.

72
,2

.3
9

2.
39

,2
.3

9
1.

22
,1

.2
2

2.
39

,1
.2

2
4.

72
,1

.2
2

9.
33

,1
.2

2
11

.4
4,

1.
22

0.
72

0.
25

0.
19

4.
47

,4
.4

7
4.

47
,2

.2
6

2.
26

,2
.2

6
1.

16
,1

.1
6

2.
26

,1
.1

6
4.

47
,1

.1
6

8.
84

,1
.1

6
10

.8
4,

1.
16

0.
84

0.
24

Frederic Abraham 108

A Appendix A.3 Decoding Examples

A.3 Decoding Examples

This appendix section includes more examples of the decoding pro-
cess.

0 5 10 15 20 25

0

5

10

15

20

25

01

2

3

4

5

6

7

8

910

(a) Corners
0 5 10 15 20 25 30

0

5

10

15

20

25

30

0

1

2

34

(b) Decoded

Figure A.3: The specific shape shows how inner corners, as calculated in lines 4 to
9 of the Algorithm 3.1, are required in the decoding process. If this
specific step were not present, the block in the centre would be found
or decoded.

5 10 15 20 25 30 35

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

0

1

2

3

4

5

6

7

8

9

Figure A.4: Decoding case in which the original rectangle of the lower structure is
so big that the two rectangular blocks don’t fill it fully. The two blocks
are created and an extra rectangle is added to the side.

Frederic Abraham 109

A Appendix A.4 Data Creation

0 5 10 15 20 25

0

2

4

6

8

10

12

14

16

0

1

2

3 456 7

Rectangles

0 5 10 15 20 25 30

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

0

1

2

Selected Blocks

SquareHole - 2

RectFat - 5

RectTiny - 7
RectTiny - 7

RectTiny - 1 X
SquareTiny - 1
SquareTiny - 1 X

X

SquareTiny - 7
SquareTiny - 7

SquareSmall - 1 X
RectTiny - 1
RectTiny - 1 X

SquareTiny - 1
SquareTiny - 1 X

RectTiny - 1
RectTiny - 1 X

SquareTiny - 1
SquareTiny - 1 X

X
SquareSmall - 7
RectTiny - 7 X

RectTiny - 7
SquareTiny - 7 X

RectTiny - 7
SquareSmall - 7 X

SquareTiny - 7
RectTiny - 7 X

RectTiny - 7
RectTiny - 7
RectTiny - 7

X

SquareTiny - 7
SquareTiny - 7
SquareTiny - 7

X

X
RectBig - 1
RectBig - 1

Graph

Figure A.5: A bit more complex example of the selection process. It can be seen
that the selection selects big blocks in the centre first, which results in
wrong paths.

A.4 Data Creation

0 1

2 3

4
5 6
7 8

9 10

11 12 13

14

15 16 17 18 19

20 21 22 23 24

25 26 27

28 29 30

31
32 33

34 35 36 37

383940414243444546

47 48 49

50 51

52
53

545556 575859
60 61 62 63

64 65 66 67 68

69 70 71 72 73

74 75 76 77 78

7980

81 82

8384

85 86

87

(a) Wireframe representation (b) Simulation

Figure A.6: Example level from the Small Dataset with multiple structures.

Frederic Abraham 110

A Appendix A.4 Data Creation

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43

44 45 46 47 48 49
50 51 52

53 54 55 56 57 58

59 60 61 62 63 64

65 66 67 68 69 70

71 72 73 74 75 76

77 78 79

8081

(a) Wireframe representation (b) Simulation

Figure A.7: Example level from the Big Dataset.

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23
24 25 26 27 28 29

30 31 32 33 34 35

36 37 38 39 40 41

42 43 44
45 46

4748

(a) Wireframe representation (b) Simulation

Figure A.8: Example level from the Wood Dataset.

Frederic Abraham 111

A Appendix A.5 Application

A.5 Application

Figure A.9: The drawing area when the One element encoding is selected shows that
the important pixel is marked in a light colour. Only the lighter colour
pixels get used in the decoding shown to the right.

Figure A.10: Window that opens when the confidence decoding button is clicked. It
can be used to set the parameters through reflections.

Frederic Abraham 112

A Appendix A.6 More Results

A.6 More Results

A.6.1 Simple GAN

0 20 40 60 80 100

0

20

40

60

80

Probability -4.243000030517578

0.0

0.2

0.4

0.6

0.8

(a) Simple Structure 3
0 2 4 6 8

0

2

4

6

8

10

12

Probability -4.243000030517578

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) Rounded to the next In-
teger

Figure A.11: The confidence in the block below is not high enough so that rounded
to the next integer it is closer to zero and removed from the rounded
representation.

0 20 40 60 80 100

0

20

40

60

80

Probability -18.65399932861328

0.2

0.0

0.2

0.4

0.6

0.8

(a) Structure 1
0 20 40 60 80 100

0

20

40

60

80

Probability -18.965999603271484

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(b) Structure 2

0 20 40 60 80 100

0

20

40

60

80

Probability -18.856000900268555

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(c) Structure 3
0 20 40 60 80 100

0

20

40

60

80

Probability -19.049999237060547

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(d) Structure 4

Figure A.12: Levels generated with the Simple GAN architecture and a filtered
dataset with the WGAN training algorithm.

Frederic Abraham 113

A Appendix A.6 More Results

0 20 40 60 80 100

0

20

40

60

80

Probability -3.9549999237060547

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(a) Structure 1
0 20 40 60 80 100

0

20

40

60

80

Probability -3.8559999465942383

0.2

0.0

0.2

0.4

0.6

0.8

(b) Structure 2

0 20 40 60 80 100

0

20

40

60

80

Probability -2.2139999866485596

0.2

0.0

0.2

0.4

0.6

0.8

(c) Structure 3
0 20 40 60 80 100

0

20

40

60

80

Probability -2.681999921798706

0.2

0.0

0.2

0.4

0.6

0.8

(d) Structure 4

Figure A.13: Levels generated with the Simple GAN architecture, filtered dataset
and the WGAN training algorithm with a Adam optimizer over 15000
epochs.

Frederic Abraham 114

A Appendix A.6 More Results

A.6.2 One Element Encoding

0 20 40 60 80

70

60

50

40

30

20

10

0 0 1

2 3
4

5

6
7

89 10 11 12 13 14 15
16

17
1819 20

21 22 2324
25 2627 2829 30

3132 33
34

35
36

3738 39 404142 43 44 45 46 47

48 49 50
5152 5354 55 56 575859 6061 62 63 64 6566

67 68
69

70
71 72

73 74
75

76 77
78

79

80
81 82 83

84 8586 87

88 89 90
91 92 9394

95
96 97
98 99 100 101102 103 104105 106

107

108
109

110
111

112113

114

115 116 117
118119
120

121

122

123124125

126127128

129
130 131

132

133 134

135 136

137

138 139

140
141 142143

144
145

146

147

148

149 150

151152

153
154 155 156157

158 159

160

161

162

163164

165 166
167

168

169

170
171

172

173

174175 176

177

(a) Decoded Structure 2 (b) After simulation resumes

0 20 40 60 80

80

60

40

20

0 0

1

2 34
5 6 7

8
9 1011

12 1314 15 16 17
18

19 20 21
2223 24 252627 2829 30

31 3233 343536 3738 39 40 4142 434445 46 47 4849 50 51
52 5354 5556

57 58 59 60
61 62 636465 66 676869 70 71 727374 75

7677 78
79 80 818283 84 85 8687

8889

90
91 9293

94

9596 97

98

99100101
102 103104 105 106 107108109

110 111
112 113 114

115
116117

118 119
120 121

122 123124
125 126

127128

129

130 131 132
133 134

135

136 137
138 139

140 141
142143 144145

146 147
148 149

150 151 152 153

154
155 156157 158

159 160 161
162 163164 165166167 168169 170

171

172

173
174

175 176

177178
179

180181

182
183

184

185186

187
188

189 190
191 192193 194 195196

197 198199 200

201

202

203

204

205

206 207 208

209 210

211 212

213

214

215 216

217 218 219 220
221

222 223 224

225

226

227228

229

(c) Decoded Structure 3
0 50 100 150 200

0

50

100

150

200

(d) Before simulation resumes

Figure A.14: The decoded structures of the Single-Layer One-Element encoding
shown in Figure 5.7a and Figure 5.7b

Frederic Abraham 115

A Appendix A.6 More Results

0 20 40 60 80 100 120

0

20

40

60

80

100

120
0

2

4

6

8

10

12

14

(a) Structure 3 in Small One-True-Hot encoding
with air

0 10 20 30 40 50

60

50

40

30

20

10

0

0
1

2 34

5 6 7 8 9 10

11 12

13

14 15 16

17 18 19 2021

22

23 24

25

26

27

2829 30

31 32

33 34 35

36

37

(b) Structure 3 decoded

0 10 20 30 40 50

0

5

10

15

20

25
0

2

4

6

8

10

12

14

(c) Structure 4 in Small One-True-Hot encod-
ing with air

0 10 20 30 40 50 60

30

25

20

15

10

5

0

5

0 1 2

3

4

5

6 7

(d) Structure 4 decoded

Figure A.15: More examples of the model using the smaller One-True-Hot encoding
trained on the convolutional WGAN architecture.

Frederic Abraham 116

A Appendix A.6 More Results

A.6.3 Multilayer Visual Encoding without air layer

0 20 40 60 80 100 120

0

20

40

60

80

100

120
1

0

1

2

3

4

(a) Flattend Representation

0 20 40 60 80 100 120

0

20

40

60

80

100

120
1.0

0.5

0.0

0.5

1.0

1.5

(b) Wood Layer
0 20 40 60 80 100 120

0

20

40

60

80

100

120
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(c) Ice Layer

0 20 40 60 80 100 120

0

20

40

60

80

100

120
1

0

1

2

3

(d) Stone Layer
0 20 40 60 80 100 120

0

20

40

60

80

100

120
1

0

1

2

3

4

(e) Enemy Layer

0 50 100 150 200

0

50

100

150

200

(f) Simulated

Figure A.16: More examples of the multilayer structure without air where all layers
are visualized.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Probability -512.6389770507812

0

1

2

3

4

(a) Structure 4 in Visual no air encoding
10 20 30 40 50 60 70

0

10

20

30

40

50

60

0 1

2

3 4

5 6

7

8910 1112

(b) Structure 3 decoded

Figure A.17: One more good example of the multilayer encoding.

Frederic Abraham 117

A Appendix A.7 Quantitative Evalutation Results

A.7 Quantitative Evalutation Results

A.7.1 Grid Search

Round To
Next Int

Custom
Kernel Scale

Minus
One Border

Combine
Layers

Negative
Air Value

Cutoff
Point

Smallest
Damage True True False True -1 0.8

Stable True True False True -1 0.5
Destoyed
blocks False True True True -1 0.8

Height False False False False 0 0.1
Block
Amount True False True False -10 0.1

Table A.3: Table that visualizes the best parameter set for the respective character-
istic.

Figure A.18: Application which is written for evaluating the grid search data.

Frederic Abraham 118

A Appendix A.7 Quantitative Evalutation Results

76.91

9.59 8.83 3.76 4.89

27.46

79.11

8.62 8.88 3.76 4.9

28.33

Damage Is Stable # Total Blocks Destroyed Height Width # Block
0

10

20

30

40

50

60

70

80

Value: True Value: False

Loading [MathJax]/extensions/MathMenu.jsFigure A.19: Graph that compares the data with both states of the “round to next
integer” parameter. Using rounded values results in a more stable level.

81.27

8.79 9.31 3.77 4.92

28.68

74.76

9.42 8.4 3.75 4.88

27.11

Damage Is Stable # Total Blocks Destroyed Height Width # Block
0

10

20

30

40

50

60

70

80

Value: True Value: False

Figure A.20: A structure decoded with both states of the Minus-One-Border.
Using a minus one border results in less stable levels and more damage.

Frederic Abraham 119

A Appendix A.7 Quantitative Evalutation Results

A.7.2 Quality Search

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

(a) Structure 1
0 50 100 150 200

0

25

50

75

100

125

150

175

200

(b) Structure 2
0 50 100 150 200

0

20

40

60

80

100

120

140

160

(c) Structure 3

Figure A.21: Generated structures based on maximising the block amount.

0 25 50 75

0

25

50

75

100

125

150

175

(a) Small Tower 1
0 25 50 75 100

0

25

50

75

100

125

150

175

(b) Small Tower 2
0 25 50 75 100

0

25

50

75

100

125

150

175

200

(c) Small Tower 3
0 20 40 60 80 100

0

20

40

60

80

100

120

140

160

(d) Small Tower 6

Figure A.22: Generated structures based on maximising the structure height while
minimising the structure width.

0 25 50 75 100 125 150 175

0

20

40

60

(a) Low Profile 1
0 25 50 75 100 125 150 175 200

0

20

40

60

(b) Low Profile 2

Figure A.24: Generated structures based on minimizing the structure height.

Frederic Abraham 120

A Appendix A.7 Quantitative Evalutation Results

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a) Flattend structure representation
0 50 100 150 200 250 300

0

20

40

60

80

100

120

140

(b) Decoded

Figure A.23: Generated structure that has a lower profile and is asymmetric.

0 25 50 75 100 125 150 175 200

0

20

40

60

80

100

(a) Pig Amount 1
0 20 40 60 80 100 120 140 160

0

20

40

60

(b) Pig Amount 2

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

(c) Pig Amount 3
0 25 50 75 100 125 150 175

0

20

40

60

80

100

120

(d) Pig Amount 6

Figure A.25: Generated stable structures based on maximising the number of pigs.

Frederic Abraham 121

	Introduction
	Motivation
	Research Goals
	Research Questions

	Science Birds

	Related Work
	History of PCG
	PCGML
	Generative Adversarial Networks
	GAN Introduction
	Difficulties in GAN Training
	Mode Collapse
	Vanishing Gradients

	Development of GANs
	DCGAN
	Wasserstein GAN

	Applications of GAN

	Videogame level Generation via machine learning
	General Level generation with GANs
	Angry Birds Level Generation
	Genetic Algorithm
	Search-based Approach
	VAE-LSTM model

	Concepts
	Encodings
	Raster Size selection
	Visual Encoding
	Dot Encoding
	Calculated Encoding
	Block Encoding Comparision

	One-Element Encoding
	Multilayer Representation

	Decoding
	Recursive Rectangle Decoding (RRD)
	Rectangle Detection
	Recursive Block Selection

	Confidence Decoding (CD)
	Matrix creation
	Linear Block Selection
	Parameter

	Model Training

	Approach
	Data Creation
	Structure Filter
	Structure Merging
	Simulation modifications

	Gan Models
	Simple GANs
	Convoluiton GANs

	Evaluation and Training
	Evaluation
	Encoding Decoding
	Quantitative Evaluation

	Training

	Testing application

	Results
	GAN training method
	Original GAN Training
	WGA Training

	Encoding Results
	One Element Encoding
	Single-Layer
	Multi-Layer

	True-One-Hot Encoding
	Clipping Values
	True-One-Hot with Air

	Visual Multilayer Encoding
	Visual Multilayer Without Air Layer
	Visual Multilayer With Air Layer

	Quantitative Evalutation Results
	Grid Search Results
	Characteristic Search
	Parameter Compare

	Quality Search

	Discussion & Conclusion
	Discussion
	GAN architectures
	Encoding
	Decoding

	Conclusion
	Research questions answered
	Future Work

	List of Figures
	List of tables
	Bibliography
	Appendix
	Introduction
	Sciencebirds

	Resolution table
	Decoding Examples
	Data Creation
	Application
	More Results
	Simple GAN
	One Element Encoding
	Multilayer Visual Encoding without air layer

	Quantitative Evalutation Results
	Grid Search
	Quality Search

		2022-11-21T11:46:11+0100
	Frederic Abraham

